Water Content, Bulk Density, and Coarse Fragment Content Measurement in Forest Soils

1993 ◽  
Vol 57 (1) ◽  
pp. 261 ◽  
Author(s):  
R. L. Fleming ◽  
T. A. Black ◽  
N. R. Eldridge
2004 ◽  
Vol 84 (2) ◽  
pp. 219-226 ◽  
Author(s):  
M. Krzic ◽  
C. E. Bulmer ◽  
F. Teste ◽  
L. Dampier ◽  
S. Rahman

The widespread use of heavy machinery during harvesting and site preparation in timber plantations in British Columbia (BC) has led to concerns that compaction causes a reduction in long-term soil productivity. Impacts of properties such as total C, water content, and texture on compactability of forest soils in BC were assessed. Two compactability indices were used: maximum bulk density (MBD) and susceptibility to compaction (SC) determined by the standard Proctor test. Soil samples were collected from 16 sites throughout BC covering a wide range of biogeoclimatic zones. Soils varied in texture (12 to 87% sand, 9 to 76% silt, and 2 to 53% clay) and organic matter content (18 to 76 g kg-1 total C). A strong negative correlation was observed between MBD and gravimetric water content at which MBD was achieved (WMBD) and between MBD and total C. Similarly, WMBD and total C had strong effects on SC. The estimation of either MBD or SC values was not substantially improved by including texture parameters to the regression equations in addition to the total C. The implication of the relationships observed in this study is that increases in soil organic matter reduce the risk of compactability, which is particularly important for forest soils where compaction is generally not corrected by implements after tree planting. The information is also useful for assessing the extent of compaction on soils affected by machine traffic. Key words: Soil compaction, Susceptibility to compaction, maximum bulk density, Proctor test, total carbon


2021 ◽  
Vol 42 (3) ◽  
Author(s):  
Rudolf Aro ◽  
Mohamed Wajdi Ben Ayoub ◽  
Ivo Leito ◽  
Éric Georgin ◽  
Benoit Savanier

AbstractIn the field of water content measurement, the calibration of coulometric methods (e.g., coulometric Karl Fischer titration or evolved water vapor analysis) is often overlooked. However, as coulometric water content measurement methods are used to calibrate secondary methods, their results must be obtained with the highest degree of confidence. The utility of calibrating such instruments has been recently demonstrated. Both single and multiple point calibration methods have been suggested. This work compares these calibration methods for the evolved water vapor analysis technique. Two uncertainty estimation approaches (Kragten’s spreadsheet and M-CARE software tool) were compared as well, both based on the ISO GUM method.


2021 ◽  
pp. 126389
Author(s):  
Marco Bittelli ◽  
Fausto Tomei ◽  
Anbazhagan P. ◽  
Raghuveer Rao Pallapati ◽  
Puskar Mahajan ◽  
...  

2001 ◽  
Vol 25 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Yoram Avnimelech ◽  
Gad Ritvo ◽  
Leon E. Meijer ◽  
Malka Kochba

Sign in / Sign up

Export Citation Format

Share Document