Tillage and Crop Residue Effects on Carbon Dioxide Evolution and Carbon Storage in a Paleustoll

1998 ◽  
Vol 62 (1) ◽  
pp. 250-256 ◽  
Author(s):  
Thanh H. Dao
2008 ◽  
Vol 88 (2) ◽  
pp. 163-174 ◽  
Author(s):  
C F Drury ◽  
X M Yang ◽  
W D Reynolds ◽  
N B McLaughlin

It is well established that nitrous oxide (N2O) and carbon dioxide (CO2) emissions from agricultural land are influenced by the type of crop grown, the form and amount of nitrogen (N) applied, and the soil and climatic conditions under which the crop is grown. Crop rotation adds another dimension that is often overlooked, however, as the crop residue being decomposed and supplying soluble carbon to soil biota is usually from a different crop than the crop that is currently growing. Hence, the objective of this study was to compare the influence of both the crop grown and the residues from the preceding crop on N2O and CO2 emissions from soil. In particular, N2O and CO2 emissions from monoculture cropping of corn, soybean and winter wheat were compared with 2 -yr and 3-yr crop rotations (corn-soybean or corn-soybean-winter wheat). Each phase of the rotation was measured each year. Averaged over three growing seasons (from April to October), annual N2O emissions were about 3.1 to 5.1 times greater in monoculture corn (2.62 kg N ha-1) compared with either monoculture soybean (0.84 kg N ha-1) or monoculture winter wheat (0.51 kg N ha-1). This was due in part to the higher inorganic N levels in the soil resulting from the higher N application rate with corn (170 kg N ha-1) than winter wheat (83 kg N ha-1) or soybean (no N applied). Further, the previous crop also influenced the extent of N2O emissions in the current crop year. When corn followed corn, the average N2O emissions (2.62 kg N ha-1) were about twice as high as when corn followed soybean (1.34 kg N ha-1) and about 60% greater than when corn followed winter wheat (1.64 kg N ha-1). Monoculture winter wheat had about 45% greater CO2 emissions than monoculture corn or 51% greater emissions than monoculture soybean. In the corn phase, CO2 emissions were greater when the previous crop was winter wheat (5.03 t C ha-1) than when it was soybean (4.20 t C ha-1) or corn (3.91 t C ha-1). Hence, N2O and CO2 emissions from agricultural fields are influenced by both the current crop and the previous crop, and this should be accounted for in both estimates and forecasts of the emissions of these important greenhouse gases. Key words: Denitrification, soil respiration, rotation, crop residue


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 374 ◽  
Author(s):  
Patrick Nyambo ◽  
Chiduza Cornelius ◽  
Tesfay Araya

Understanding the impacts of agricultural practices on carbon stocks and CO2 emission is imperative in order to recommend low emission strategies. The objective of this study was to investigate the effects of tillage, crop rotation, and residue management on soil CO2 fluxes, carbon stock, soil temperature, and moisture in the semi-arid conditions in the Eastern Cape of South Africa. The field trial was laid out as a split-split-plot design replicated three times. The main plots were tillage viz conventional tillage (CT) and no-till (NT). The sub-plots were allocated to crop rotations viz maize–fallow–maize (MFM), maize–oat–maize (MOM), and maize–vetch–maize (MVM). Crop residue management was in the sub-sub plots, viz retention (R+), removal (R−), and biochar (B). There were no significant interactions (p > 0.05) with respect to the cumulative CO2 fluxes, soil moisture, and soil temperature. Crop residue retention significantly increased the soil moisture content relative to residue removal, but was not different to biochar application. Soil tilling increased the CO2 fluxes by approximately 26.3% relative to the NT. The carbon dioxide fluxes were significantly lower in R− (2.04 µmoL m−2 s−1) relative to the R+ (2.32 µmoL m−2 s−1) and B treatments (2.36 µmoL m−2 s−1). The carbon dioxide fluxes were higher in the summer (October–February) months compared to the winter period (May–July), irrespective of treatment factors. No tillage had a significantly higher carbon stock at the 0-5 cm depth relative to CT. Amending the soils with biochar resulted in significantly lower total carbon stock relative to both R+ and R−. The results of the study show that NT can potentially reduce CO2 fluxes. In the short term, amending soils with biochar did not reduce the CO2 fluxes compared to R+, however the soil moisture increases were comparable.


Sign in / Sign up

Export Citation Format

Share Document