Nitrous oxide and carbon dioxide emissions from monoculture and rotational cropping of corn, soybean and winter wheat

2008 ◽  
Vol 88 (2) ◽  
pp. 163-174 ◽  
Author(s):  
C F Drury ◽  
X M Yang ◽  
W D Reynolds ◽  
N B McLaughlin

It is well established that nitrous oxide (N2O) and carbon dioxide (CO2) emissions from agricultural land are influenced by the type of crop grown, the form and amount of nitrogen (N) applied, and the soil and climatic conditions under which the crop is grown. Crop rotation adds another dimension that is often overlooked, however, as the crop residue being decomposed and supplying soluble carbon to soil biota is usually from a different crop than the crop that is currently growing. Hence, the objective of this study was to compare the influence of both the crop grown and the residues from the preceding crop on N2O and CO2 emissions from soil. In particular, N2O and CO2 emissions from monoculture cropping of corn, soybean and winter wheat were compared with 2 -yr and 3-yr crop rotations (corn-soybean or corn-soybean-winter wheat). Each phase of the rotation was measured each year. Averaged over three growing seasons (from April to October), annual N2O emissions were about 3.1 to 5.1 times greater in monoculture corn (2.62 kg N ha-1) compared with either monoculture soybean (0.84 kg N ha-1) or monoculture winter wheat (0.51 kg N ha-1). This was due in part to the higher inorganic N levels in the soil resulting from the higher N application rate with corn (170 kg N ha-1) than winter wheat (83 kg N ha-1) or soybean (no N applied). Further, the previous crop also influenced the extent of N2O emissions in the current crop year. When corn followed corn, the average N2O emissions (2.62 kg N ha-1) were about twice as high as when corn followed soybean (1.34 kg N ha-1) and about 60% greater than when corn followed winter wheat (1.64 kg N ha-1). Monoculture winter wheat had about 45% greater CO2 emissions than monoculture corn or 51% greater emissions than monoculture soybean. In the corn phase, CO2 emissions were greater when the previous crop was winter wheat (5.03 t C ha-1) than when it was soybean (4.20 t C ha-1) or corn (3.91 t C ha-1). Hence, N2O and CO2 emissions from agricultural fields are influenced by both the current crop and the previous crop, and this should be accounted for in both estimates and forecasts of the emissions of these important greenhouse gases. Key words: Denitrification, soil respiration, rotation, crop residue

2021 ◽  
Vol 19 (5) ◽  
pp. 35-42
Author(s):  
Abdullah A. Abdullah

The element carbon Carbon dioxide emissions are increasing primarily as a result of people's use of fossil fuels for electricity. Coal and oil are fossil fuels that contain carbon that plants removed from the atmosphere by photosynthesis over millions of years; and in just a few hundred years we've returned carbon to the atmosphere. The element carbon Carbon dioxide concentrations rise primarily as a result of the burning of fossil fuels and Freon for electricity. Fossil fuels such as coal, oil and gas produce carbon plants that were photosynthesized from the atmosphere over many years, since in just two centuries, carbon was returned to the atmosphere. Climate alter could be a noteworthy time variety in weather designs happening over periods ranging from decades to millions of a long time. The permanent change in climatic conditions, or in the time period of long-term natural conditions, indicates irregularity in climatic conditions. Discuss toxins are pollutants that have an adverse impact on the ecosystem through interferometry's with the climatic environment, plant physiology, creature organisms, complete biological systems and human property in the form of agricultural or human crops. We list the best climate to represent the fact that global climate change has been identified as one of the major environmental problems facing humanity in the 21st century. In this context, the list of "classic" poisons must be included alongside substances such as oxides of nitrogen or sulfide. Certain environment limiting agents – the most crucial of them being carbon dioxide – which otherwise do not damage life formations. On the other hand, climate research has linked some compounds that have long been known to discuss toxin (occasionally dark CO2) with the warming of the climate.


2009 ◽  
Vol 2009 ◽  
pp. 249-249
Author(s):  
H Prosser

The work of the UK Climate Change Commission (UKCCC) in recommending targets and options for reducing emissions of greenhouse gases is focusing attention on what agriculture and land use can contribute to deliver these targets. Although overall the major issue is the reduction of carbon dioxide emissions from energy use, agriculture and land use are significant emitters of methane and nitrous oxide. UKCCC has identified three main routes by which emissions can be reduced• Lifestyle change with less reliance on carbon intensive produce -eg switching from sheep, and beef to pig, poultry and vegetables.• Changing farm practices – eg to improve use of fertilisers and manures• Using new technology on farms – eg modifying rumen processes, anaerobic digestion.


2018 ◽  
Vol 98 (3) ◽  
pp. 389-398 ◽  
Author(s):  
K.P. Edwards ◽  
C.A. Madramootoo ◽  
J.K. Whalen ◽  
V.I. Adamchuk ◽  
A.S. Mat Su ◽  
...  

Irrigation practices change the soil moisture in agricultural fields and influence emissions of greenhouse gases (GHG). A 2 yr field study was conducted to assess carbon dioxide (CO2) and nitrous oxide (N2O) emissions from surface and subsurface drip irrigated tomato (Solanum lycopersicum L.) fields on a loamy sand in southern Ontario. Surface and subsurface drip irrigation are common irrigation practices used by tomato growers in southern Ontario. The N2O fluxes were generally ≤50 μg N2O-N m−2 h−1, with mean cumulative emissions ranging between 352 ± 83 and 486 ± 138 mg N2O-N m−2. No significant difference in N2O emissions between the two drip irrigation practices was found in either study year. Mean CO2 fluxes ranged from 22 to 160 mg CO2-C m2 h−1 with cumulative fluxes between 188 ± 42 and 306 ± 31 g CO2-C m−2. Seasonal CO2 emissions from surface drip irrigation were significantly greater than subsurface drip irrigation in both years, likely attributed to sampling time temperature differences. We conclude that these irrigation methods did not have a direct effect on the GHG emissions from tomato fields in this study. Therefore, both irrigation methods are expected to have similar environmental impacts and are recommended to growers.


2013 ◽  
Vol 77 (3) ◽  
pp. 817-829 ◽  
Author(s):  
Xiaobin Guo ◽  
Craig F. Drury ◽  
W. Daniel Reynolds ◽  
Xueming Yang ◽  
Ruqin Fan

2021 ◽  
Vol 120 ◽  
pp. 33-40
Author(s):  
Bangliang Deng ◽  
Xi Yuan ◽  
Evan Siemann ◽  
Shuli Wang ◽  
Haifu Fang ◽  
...  

2015 ◽  
Vol 10 (3) ◽  
pp. 034011 ◽  
Author(s):  
Richard S Stolarski ◽  
Anne R Douglass ◽  
Luke D Oman ◽  
Darryn W Waugh

Sign in / Sign up

Export Citation Format

Share Document