Millimeter-Scale Spatial Variability in Soil Water Sorptivity

2004 ◽  
Vol 68 (2) ◽  
pp. 352-358 ◽  
Author(s):  
P. D. Hallett ◽  
N. Nunan ◽  
J. T. Douglas ◽  
I. M. Young
2016 ◽  
Vol 30 (3) ◽  
pp. 349-357 ◽  
Author(s):  
Aura Pedrera-Parrilla ◽  
Eric C. Brevik ◽  
Juan V. Giráldez ◽  
Karl Vanderlinden

Abstract Understanding of soil spatial variability is needed to delimit areas for precision agriculture. Electromagnetic induction sensors which measure the soil apparent electrical conductivity reflect soil spatial variability. The objectives of this work were to see if a temporally stable component could be found in electrical conductivity, and to see if temporal stability information acquired from several electrical conductivity surveys could be used to better interpret the results of concurrent surveys of electrical conductivity and soil water content. The experimental work was performed in a commercial rainfed olive grove of 6.7 ha in the ‘La Manga’ catchment in SW Spain. Several soil surveys provided gravimetric soil water content and electrical conductivity data. Soil electrical conductivity values were used to spatially delimit three areas in the grove, based on the first principal component, which represented the time-stable dominant spatial electrical conductivity pattern and explained 86% of the total electrical conductivity variance. Significant differences in clay, stone and soil water contents were detected between the three areas. Relationships between electrical conductivity and soil water content were modelled with an exponential model. Parameters from the model showed a strong effect of the first principal component on the relationship between soil water content and electrical conductivity. Overall temporal stability of electrical conductivity reflects soil properties and manifests itself in spatial patterns of soil water content.


2020 ◽  
Vol 20 (3) ◽  
pp. 860-870 ◽  
Author(s):  
Tao Li ◽  
Jian-feng Zhang ◽  
Si-yuan Xiong ◽  
Rui-xi Zhang

Abstract Assessing the spatial variability of soil water content is important for precision agriculture. To measure the spatial variability of the soil water content and to determine the optimal number of sampling sites for predicting the mean soil water content at different stages of the irrigation cycle, field experiments were carried out in a potato field in northwestern China. The soil water content was measured in 2016 and 2017 at depths of 0–20 and 20–40 cm at 116 georeferenced locations. The average coefficient of variation of the soil water content was 20.79% before irrigation and was 16.44% after irrigation at a depth of 0–20 cm. The spatial structure of the soil water content at a depth of 20–40 cm was similar throughout the irrigation cycle, but at a depth of 0–20 cm a relatively greater portion of the variation in the soil water content was spatially structured before irrigation than after irrigation. The autocorrelation of soil water contents was influenced by irrigation only in the surface soil layer. To accurately predict mean soil moisture content, 40 and 20 random sampling sites should be chosen with errors of 5% and 10%, respectively.


CATENA ◽  
2018 ◽  
Vol 162 ◽  
pp. 333-344 ◽  
Author(s):  
Xuemei Mei ◽  
Qingke Zhu ◽  
Lan Ma ◽  
Dong Zhang ◽  
Huifang Liu ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Benjamin Bois ◽  
Basile Pauthier ◽  
Luca Brillante ◽  
Olivier Mathieu ◽  
Jean Leveque ◽  
...  

Soil Science ◽  
1994 ◽  
Vol 157 (1) ◽  
pp. 12-18 ◽  
Author(s):  
P. MOLDRUP ◽  
T. YAMAGUCHI ◽  
D. E. ROLSTON ◽  
J. AA. HANSEN

2021 ◽  
Author(s):  
Shengping Li ◽  
Guopeng Liang ◽  
Xueping Wu ◽  
Jinjing Lu ◽  
Erwan Plougonven ◽  
...  

Abstract. Drought is increasingly common due to frequent occurrences of extreme weather events, which further increases soil water repellency (SWR) and influences grain yield. Conservation agriculture is playing a vital role in attaining high food security and it could also increase SWR. However, the relationship between SWR and grain yield under conservation agriculture is still not fully understood. We studied the impact of SWR in 0–5 cm, 5–10 cm, and 10–20 cm layers during three growth periods on grain yield from a soil water availability perspective using a long-term field experiment. In particular, we assessed the effect of SWR on soil water content under two rainfall events with different rainfall intensities. Three treatments were conducted: conventional tillage (CT), reduced tillage (RT), and no-tillage (NT). The results showed that the water repellency index (RI) of NT and RT treatments in 0–20 cm layers was increased by 12.9 %–39.9 % and 5.7 %–18.2 % compared to CT treatment during the three growth periods, respectively. The effect of the RI on soil water content became more obvious with the decrease in soil moisture following rainfall, which was also influenced by rainfall intensity. The RI played a prominent role in increasing soil water storage during the three growth periods compared to the soil total porosity, penetration resistance, mean weight diameter, and organic carbon content. Furthermore, although the increment in the RI under NT treatment increased the soil water storage, grain yield was not influenced by RI (p > 0.05) because the grain yield under NT treatment was mainly driven by penetration resistance and least limiting water range (LLWR). The higher water sorptivity increased LLWR and water use efficiency, which further increased the grain yield under RT treatment. Overall, SWR, which was characterized by water sorptivity and RI, had the potential to influence grain yield by changing soil water availability (e.g. LLWR and soil water storage) and RT treatment was the most effective tillage management compared to CT and NT treatments in improving grain yield.


Sign in / Sign up

Export Citation Format

Share Document