scholarly journals Soil water repellency influences maize yield by changing soil water availability under long-term tillage management

2021 ◽  
Author(s):  
Shengping Li ◽  
Guopeng Liang ◽  
Xueping Wu ◽  
Jinjing Lu ◽  
Erwan Plougonven ◽  
...  

Abstract. Drought is increasingly common due to frequent occurrences of extreme weather events, which further increases soil water repellency (SWR) and influences grain yield. Conservation agriculture is playing a vital role in attaining high food security and it could also increase SWR. However, the relationship between SWR and grain yield under conservation agriculture is still not fully understood. We studied the impact of SWR in 0–5 cm, 5–10 cm, and 10–20 cm layers during three growth periods on grain yield from a soil water availability perspective using a long-term field experiment. In particular, we assessed the effect of SWR on soil water content under two rainfall events with different rainfall intensities. Three treatments were conducted: conventional tillage (CT), reduced tillage (RT), and no-tillage (NT). The results showed that the water repellency index (RI) of NT and RT treatments in 0–20 cm layers was increased by 12.9 %–39.9 % and 5.7 %–18.2 % compared to CT treatment during the three growth periods, respectively. The effect of the RI on soil water content became more obvious with the decrease in soil moisture following rainfall, which was also influenced by rainfall intensity. The RI played a prominent role in increasing soil water storage during the three growth periods compared to the soil total porosity, penetration resistance, mean weight diameter, and organic carbon content. Furthermore, although the increment in the RI under NT treatment increased the soil water storage, grain yield was not influenced by RI (p > 0.05) because the grain yield under NT treatment was mainly driven by penetration resistance and least limiting water range (LLWR). The higher water sorptivity increased LLWR and water use efficiency, which further increased the grain yield under RT treatment. Overall, SWR, which was characterized by water sorptivity and RI, had the potential to influence grain yield by changing soil water availability (e.g. LLWR and soil water storage) and RT treatment was the most effective tillage management compared to CT and NT treatments in improving grain yield.

Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 37 ◽  
Author(s):  
Yan Liang ◽  
Shahbaz Khan ◽  
Ai-xia Ren ◽  
Wen Lin ◽  
Sumera Anwar ◽  
...  

Dryland winter wheat in the Loess Plateau is facing a yield reduction due to a shortage of soil moisture and delayed sowing time. The field experiment was conducted at Loess Plateau in Shanxi, China from 2012 to 2015, to study the effect of subsoiling and conventional tillage and different sowing dates on the soil water storage, Nitrogen (N) accumulation, and remobilization and yield of winter wheat. The results showed that subsoiling significantly improved the soil water storage (0–300 cm soil depth) and increased the contribution of N translocation to grain N and grain yield (17–36%). Delaying sowing time had reduced the soil water storage at sowing and winter accumulated growing degree days by about 180 °C. The contribution of N translocation to grain yield was maximum in glume + spike followed by in leaves and minimum by stem + sheath. Moreover, there was a positive relationship between the N accumulation and translocation and the soil moisture in the 20–300 cm range. Subsoiling during the fallow period and the medium sowing date was beneficial for improving the soil water storage and increased the N translocation to grain, thereby increasing the yield of wheat, especially in a dry year.


2009 ◽  
Vol 13 (13) ◽  
pp. 1-22 ◽  
Author(s):  
Charles P-A. Bourque ◽  
Quazi K. Hassan

Abstract This paper explores the relationship between vegetation in the Liangzhou Oasis in the Upper Shiyang River watershed (USRW) of west-central Gansu, China, and within-watershed precipitation, soil water storage, and oasis self-support. Oases along the base of the Qilian Mountains receive a significant portion of their water supply (over 90%) from surface and subsurface flow originating from the Qilian Mountains. Investigation of vegetation control on oasis water conditions in the USRW is based on an application of a process model of soil water hydrology. The model is used to simulate long-term soil water content (SWC) in the Liangzhou Oasis as a function of (i) monthly composites of Moderate Resolution Imaging Spectroradiometer (MODIS) images of land surface and mean air temperature, (ii) spatiotemporal calculations of monthly precipitation and relative humidity generated with the assistance of genetic algorithms (GAs), and (iii) a 80-m-resolution digital elevation model (DEM) of the area. Modeled removal of vegetation is shown to affect within-watershed precipitation and soil water storage by reducing the exchange of water vapor from the land surface to the air, increasing the air’s lifting condensation level by promoting drier air conditions, and causing the high-intensity precipitation band in the Qilian Mountains to weaken and to be displaced upward, leading to an overall reduction of water to the Liangzhou Oasis.


1993 ◽  
Vol 23 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Patrick J. Temple ◽  
George H. Riechers ◽  
Paul R. Miller ◽  
Robert W. Lennox

A 3-year field study of the cumulative effects of ozone (O3), wet and dry acidic deposition, and soil water availability was conducted on ponderosa pine (Pinusponderosa Laws.) in the Sierra Nevada of California from 1988 to 1990. Thirty-six 2-year-old potted seedlings were placed in each of 30 chambers and exposed from May through October to three levels of O3 (charcoal-filtered (CF), nonfiltered (NF), and NF plus 1.5 times ambient O3 (NF150)); three levels of acidity in simulated rain (pH 3.5, 4.4, 5.3); two levels of dry deposition (60 or 90% filtration), and two levels of soil water availability (well watered (WW) or drought stressed (DS)). An additional six plots served as ambient air (AA) controls. One-third (432) of the trees were harvested at the end of each exposure season. Low soil water availability was the only stress factor to significantly affect growth following the first exposure season. After the second season, O3 significantly reduced foliar biomass in WW–NF150 trees, but DS seedlings did not respond to O3. After 3 years of exposure, WW–NF150 trees averaged 70% loss of 1988 needles and 48% loss of 1989 foliage. Ozone-injured seedlings compensated for these losses by increased growth of current-year needles and stems and also increased growth of fine feeder roots. Radial stem growth and coarse-root growth were significantly reduced in O3-injured trees. DS trees in NF150 chambers averaged half the needle loss of WW trees and showed no reduction in radial growth in response to O3. Rain pH and dry deposition had no direct effects on growth of ponderosa pine. These cumulative responses to interacting stresses indicate the importance of multifactorial, long-term studies to evaluate forest tree responses to atmospheric deposition.


1998 ◽  
Vol 49 (1-2) ◽  
pp. 19-27 ◽  
Author(s):  
Drew J. Lyon ◽  
Walter W. Stroup ◽  
Randall E. Brown

2017 ◽  
Vol 91 ◽  
pp. 10-15 ◽  
Author(s):  
Bart Kerré ◽  
Bernd Willaert ◽  
Yannah Cornelis ◽  
Erik Smolders

Sign in / Sign up

Export Citation Format

Share Document