An Automated Tool for Three Types of Saturated Hydraulic Conductivity Laboratory Measurements

2009 ◽  
Vol 73 (2) ◽  
pp. 466-470 ◽  
Author(s):  
T.W. Wietsma ◽  
M. Oostrom ◽  
M.A. Covert ◽  
T.E. Queen ◽  
M.J. Fayer
1990 ◽  
Vol 21 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Johnny Fredericia

The background for the present knowledge about hydraulic conductivity of clayey till in Denmark is summarized. The data show a difference of 1-2 orders of magnitude in the vertical hydraulic conductivity between values from laboratory measurements and field measurements. This difference is discussed and based on new data, field observations and comparison with North American studies, it is concluded to be primarily due to fractures in the till.


1999 ◽  
Vol 30 (3) ◽  
pp. 177-190 ◽  
Author(s):  
Per Atle Olsen

The hydraulic conductivity in structured soils is known to increase drastically when approaching saturation. Tension infiltration allows in situ infiltration of water at predetermined matric potentials, thus allowing exploration of the hydraulic properties near saturation. In this study, the near saturated (ψ≥-0.15 m) hydraulic conductivity was estimated both in the top- and sub-soil of three Norwegian soils. A priory analysis of estimation errors due to measurement uncertainties was conducted. In order to facilitate the comparison between soils and depths, scaling analysis was applied. It was found that the increase in hydraulic conductivity with increasing matric potentials (increasing water content) was steeper in the sub-soil than in the top-soil. The estimated field saturated hydraulic conductivity was compared with laboratory measurements of the saturated hydraulic conductivity. The geometric means of the laboratory measurements was in the same order of magnitude as the field estimates. The variability of the field estimates of the hydraulic conductivity from one of the soils was also assessed. The variability of the field estimates was generally smaller than the laboratory measurements of the saturated hydraulic conductivity.


Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 959
Author(s):  
Łukasz Borek ◽  
Andrzej Bogdał ◽  
Tomasz Kowalik

A key parameter for the design of soil drainage and irrigation facilities and for the modelling of surface runoff and erosion phenomena in land-formed areas is the saturated hydraulic conductivity (Ks). There are many methods for determining its value. In situ and laboratory measurements are commonly regarded as the most accurate and direct methods; however, they are costly and time-consuming. Alternatives can be found in the increasingly popular models of pedotransfer functions (PTFs), which can be used for rapid determination of soil hydrophysical parameters. This study presents an analysis of the Ks values obtained from in situ measurements conducted using a double-ring infiltrometer (DRI). The measurements were conducted using a laboratory permeability meter (LPM) and were estimated using five PTFs in the Rosetta program, based on easily accessible input data, i.e., the soil type, content of various grain sizes in %, density, and water content at 2.5 and 4.2 pF, respectively. The degrees of matching between the results from the PTF models and the values obtained from the in situ and laboratory measurements were investigated based on the root-mean-square deviation (RMSD), Nash–Sutcliffe efficiency (NSE), and determination coefficient (R2). The statistical relationships between the tested variables tested were confirmed using Spearman’s rank correlation coefficient (rho). Data analysis showed that in situ measurements of Ks were only significantly correlated with the laboratory tests conducted on intact samples; the values obtained in situ were much higher. The high sensitivity of Ks to biotic and abiotic factors, especially in the upper soil horizons, did not allow for a satisfactory match between the values from the in situ measurements and those obtained from the PTFs. In contrast, the laboratory measurements, showed a significant correlation with the Ks values, as estimated by the models PTF-2 to PTF-5; the best match was found for PTF-2.


2019 ◽  
Vol 34 (2) ◽  
pp. 237-243
Author(s):  
Jari Hyväluoma ◽  
Mari Räty ◽  
Janne Kaseva ◽  
Riikka Keskinen

2021 ◽  
Vol 13 (13) ◽  
pp. 7301
Author(s):  
Marcin K. Widomski ◽  
Anna Musz-Pomorska ◽  
Wojciech Franus

This paper presents research considering hydraulic as well as swelling and shrinkage characteristics of potential recycled fine particle materials for compacted clay liner for sustainable landfills. Five locally available clay soils mixed with 10% (by mass) of NaP1 recycled zeolite were tested. The performed analysis was based on determined plasticity, cation exchange capacity, coefficient of saturated hydraulic conductivity after compaction, several shrinkage and swelling characteristics as well as, finally, saturated hydraulic conductivity after three cycles of drying and rewetting of tested specimens and the reference samples. The obtained results showed that addition of zeolite to clay soils allowed reduction in their saturated hydraulic conductivity to meet the required threshold (≤1 × 10−9 m/s) of sealing capabilities for compacted clay liner. On the other hand, an increase in plasticity, swelling, and in several cases in shrinkage, of the clay–zeolite mixture was observed. Finally, none of the tested mixtures was able to sustain its sealing capabilities after three cycles of drying and rewetting. Thus, the studied clayey soils mixed with sustainable recycled zeolite were assessed as promising materials for compacted liner construction. However, the liner should be operated carefully to avoid extensive dissication and cracking.


Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 26
Author(s):  
Muhammad Rashid Iqbal ◽  
Hiniduma Liyanage Damith Nandika ◽  
Yugo Isobe ◽  
Ken Kawamoto

Gas transport parameters such as gas diffusivity (Dp/D0), air permeability (ka), and their dependency on void space (air-filled porosity, ε) in a waste body govern convective air and gas diffusion at solid waste dumpsites and surface emission of various gases generated by microbial processes under aerobic and anaerobic decompositions. In this study, Dp/D0(ε) and ka(ε) were measured on dumping solid waste in Japan such as incinerated bottom ash and unburnable mixed waste as well as a buried waste sample (dumped for 20 years). Sieved samples with variable adjusted moistures were compacted by a standard proctor method and used for a series of laboratory tests for measuring compressibility, saturated hydraulic conductivity, and gas transport parameters. Results showed that incinerated bottom ash and unburnable mixed waste did not give the maximum dry density and optimum moisture content. Measured compressibility and saturated hydraulic conductivity of tested samples varied widely depending on the types of materials. Based on the previously proposed Dp/D0(ε) models, the diffusion-based tortuosity (T) was analyzed and unique power functional relations were found in T(ε) and could contribute to evaluating the gas diffusion process in the waste body compacted at different moisture conditions.


Sign in / Sign up

Export Citation Format

Share Document