Efficiency Comparison of Conventional and Digital Soil Mapping for Updating Soil Maps

2012 ◽  
Vol 76 (6) ◽  
pp. 2097-2115 ◽  
Author(s):  
Bas Kempen ◽  
Dick J. Brus ◽  
Jetse J. Stoorvogel ◽  
Gerard B.M. Heuvelink ◽  
Folkert de Vries
2019 ◽  
Vol 43 (6) ◽  
pp. 827-854 ◽  
Author(s):  
Bradley A Miller ◽  
Eric C Brevik ◽  
Paulo Pereira ◽  
Randall J Schaetzl

The geography of soil is more important today than ever before. Models of environmental systems and myriad direct field applications depend on accurate information about soil properties and their spatial distribution. Many of these applications play a critical role in managing and preparing for issues of food security, water supply, and climate change. The capability to deliver soil maps with the accuracy and resolution needed by land use planning, precision agriculture, as well as hydrologic and meteorologic models is, fortunately, on the horizon due to advances in the geospatial revolution. Digital soil mapping, which utilizes spatial statistics and data provided by modern geospatial technologies, has now become an established area of study for soil scientists. Over 100 articles on digital soil mapping were published in 2018. The first and second generations of soil mapping thrived from collaborations between Earth scientists and geographers. As we enter the dawn of the third generation of soil maps, those collaborations remain essential. To that end, we review the historical connections between soil science and geography, examine the recent disconnect between those disciplines, and draw attention to opportunities for the reinvigoration of the long-standing field of soil geography. Finally, we emphasize the importance of this reinvigoration to geographers.


2020 ◽  
Author(s):  
Nada Mzid ◽  
Stefano Pignatti ◽  
Irina Veretelnikova ◽  
Raffaele Casa

<p>The application of digital soil mapping in precision agriculture is extremely important, since an assessment of the spatial variability of soil properties within cultivated fields is essential in order to optimize agronomic practices such as fertilization, sowing, irrigation and tillage. In this context, it is necessary to develop methods which rely on information that can be obtained rapidly and at low cost. In the present work, an assessment is carried out of what are the most useful covariates to include in the digital soil mapping of field-scale properties of agronomic interest such as texture (clay, sand, silt), soil organic matter and pH in different farms of the Umbria Region in Central Italy. In each farm a proximal sensing-based mapping of the apparent soil electrical resistivity was carried out using the EMAS (Electro-Magnetic Agro Scanner) sensor. Soil sampling and subsequent analysis in the laboratory were carried out in each field. Different covariates were then used in the development of digital soil maps: apparent resistivity, high resolution Digital Elevation Model (DEM) from Lidar data, and bare soil and/or vegetation indices derived from Sentinel-2 images of the experimental fields. The approach followed two steps: (i) estimation of the variables using a Multiple Linear Regression (MLR) model, (ii) spatial interpolation via prediction models (including regression kriging and block kriging). The validity of the digital soil maps results was assessed both in terms of the accuracy in the estimation of soil properties and in terms of their impact on the fertilization prescription maps for nitrogen (N), phosphorus (P) and potassium (K).</p>


2020 ◽  
Author(s):  
Yan Guo ◽  
Ting Liu ◽  
Zhou Shi ◽  
Laigang Wang

<p>     Soil organic carbon (SOC) is a key property that affects soil quality and the assessment of soil resources. However, the spatial distribution of SOC is very heterogeneous and existing soil maps have considerable uncertainty. Traditional polygon-based soil maps are less useful for fine-resolution soil maps modeling and monitoring because they do not adequately characterize and quantify the spatial variation of continuous soil properties. And recently, digital soil mapping of organic carbon is the main source of information to be used in natural resource assessment and soil management. In this study, we collected 100 soil samples on a 50 m grid to conduct soil maps of topsoil (0-20 cm) organic carbon in a 500×500m field and evaluate the uncertainty by spatial stochastic simulation. The map of soil organic carbon generated by inverse distance weighting interpolation indicated that the average topsoil SOC is 11.59±0.61g/kg with averaged standard deviation error is 0.61. In order to evaluate the uncertainties, numbers were defined as 50, 100, 200, 500, 1000, 5000, 10000 with interval of 2×2 m to conduct conditional simulation. The standard deviation error gradually declined from 0.74 to 0.51 g/kg. Then, the uncertainty of SOC was expressed as the range of the 95% confidence intervals of the standard deviation error. Maps of uncertainty showed fine spatial heterogeneity even the numbers of simulations reached 10000. Compared with inverse distance weighting interpolation method, conditional simulation approach can improve the fine-resolution SOC maps. For some points, the simulated values deviated from the averaged values while closed to the observed values. On the whole, the maps of uncertainty showed larger waves in the field-edge and different SOC contour border. Consideration of the sample distribution and sampling strategy, the uncertainty map provides a guide for decision-making in additional sampling.</p><p><strong>Key words</strong><strong>:</strong> Soil organic carbon (SOC); uncertainty assessment; conditional simulation; digital soil mapping</p><p><strong>Acknowledgements</strong></p><p>This material is based upon work funded by National Natural Science Foundation of China (No. 41601213), Major science and technology projects of Henan (171100110600), the Key Science and Technology Program of Henan (182102410024).</p>


2013 ◽  
Vol 37 (5) ◽  
pp. 1136-1148 ◽  
Author(s):  
Osmar Bazaglia Filho ◽  
Rodnei Rizzo ◽  
Igo Fernando Lepsch ◽  
Hélio do Prado ◽  
Felipe Haenel Gomes ◽  
...  

Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.


2017 ◽  
Vol 21 (1) ◽  
pp. 239-253
Author(s):  
Shamsollah Ayoubi ◽  
Farideh Abbaszadeh ◽  
Azam Jafari ◽  
◽  
◽  
...  

2016 ◽  
Vol 10 (3-4) ◽  
pp. 203-213 ◽  
Author(s):  
László Pásztor ◽  
Annamária Laborczi ◽  
Katalin Takács ◽  
Gábor Szatmári ◽  
Gábor Illés ◽  
...  

With the ongoing DOSoReMI.hu project we aimed to significantly extend the potential, how soil information requirements could be satisfied in Hungary. We started to compile digital soil maps, which fulfil optimally general as well as specific national and international demands from the aspect of thematic, spatial and temporal accuracy. In addition to relevant and available auxiliary, spatial data themes related to soil forming factors and/or to indicative environmental elements we heavily lean on the various national soil databases. The set of the applied digital soil mapping techniques is gradually broadened. In our paper we present some results in the form of brand new soil maps focusing on the territory of Hajdú-Bihar county.


2012 ◽  
Vol 36 (4) ◽  
pp. 1083-1092 ◽  
Author(s):  
Alexandre ten Caten ◽  
Ricardo Simão Diniz Dalmolin ◽  
Luis Fernando Chimelo Ruiz

The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT) models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.


2020 ◽  
Author(s):  
Madlene Nussbaum ◽  
Stéphane Burgos

<p>Spatial information on soil is crucial for many applications such as spatial planning, erosion reduction, climate mitigation and forest or natural hazard management. Many countries (e. g. Switzerland, France, Germany, Albania) still use conventional soil mapping approaches which are often very time consuming and costly. Methods to gain soil maps with geostatistics and supported with other digital technologies have reached a high level of maturity some time ago. Each single method has been well studied and transfer to practice took place in some countries. Nevertheless, we are not aware of a large soil mapping endeavor that sampled a considerable amount of new soil data by a practical and geostatistically sound sampling design and by integrating digital field tools, centralized soil data management, soil spectroscopy, digital soil mapping and subsequent soil function assessment all followed by quality assurance measures.</p><p> </p><p>In Switzerland, political pressure has recently risen to improve the basis for soil related decision making. The administration of the Swiss Canton of Berne aims to map agricultural and forest soils of the lowlands (210000 hectares) with high resolution to allow for decisions relevant to landownership. In the mountainous areas (240000 hectares) at least maps with medium detail are necessary, especially for natural hazard management. Currently, the project is in the phase of efficiency testing of each methodological element and establishing of interfaces between them. We present a concept that combines available state-of-the-art technologies and should allow to create the required detailed soil maps within the next 15 years. Only few legacy soil data are available, hence we planned for 5200 newly sampled profile pits and about 360000 auger holes. This large sampling effort is hierarchically structured with field observations based on classical pedological descriptions supported with laboratory and field spectroscopy. Iterative sampling is driven by the uncertainty of the maps up to the point where the required accuracy is reached. Intermediate and final soil maps are created with machine learning based digital soil mapping techniques. From the finally mapped soil properties soil functions and application products are derived by digital soil assessment approaches driven by the needs of the end users.</p><p> </p><p>Within this phase of the project we exploited the legacy soil maps available for the surroundings of some villages. As soil augerings were not recorded during map production, we generated “virtual soil samples” from the maps and used a machine learning based model averaging approach to predict soil properties for the nearby areas. Class width and multiple assignments of legend units per soil map polygon were considered by a non-parametric bootstrap approach to create predictive distributions and map the uncertainty. To avoid extrapolation into areas with different soil forming factors we have carefully chosen the target area for prediction based on a similarity analysis. The predictions have been successfully validated with legacy soil profiles and new field observations.</p>


2021 ◽  
Author(s):  
Fuat Kaya ◽  
Levent Başayiğit

<p>Soil maps are an important source of data in monitoring natural resources and land use planning. However, in many countries, soil maps were prepared at a reconnaissance level. This detail is not enough for land use planning. Soil texture is one of the most important soil physical properties that affect water holding capacity, nutrient availability, and crop growth. The spatial distribution of soil texture at a high resolution is essential for crop planning and management. Digital soil mapping is the method of spatial data generation with the advantages of current technologies. It supplies fast, accurate, and reproducible results.</p><p>In this study, a soil texture map with 30 m spatial resolution was produced for an alluvial plain covering an area of approximately 10,000 ha. In the study, 11 Topographic Environmental Variables obtained from NASA's ASTER Global Digital Elevation model were used. Another input parameters were clay, silt, and sand values determined for 91 soil samples obtained through field studies.</p><p>R Core Environment (3.6.1) and related packages were used for environmental variable extraction, modeling, and spatial mapping. For model building, 70 % of data was used and the rest of the data was used for validation. Random Forest Algorithm offers interpretability for pedological information extraction by determining the importance of environmental variables in digital soil mapping. Random Forest Algorithm is preferred because of working in small data sets, harmoniously. The most important topographic environmental variables for clay were elevation, aspect, and slope. For sand, it was the elevation, aspect, and topographic wetness index. And for silt, it was the elevation, slope length, and planform curvature. Root Mean Square Error (RMSE), was used as a model performance measure. In the train data, R<sup>2</sup> values for clay, sand and silt were 0.84, 0.75, 0.85 and RMSE values were 5.23 %, 3.03 %, 5.48 % respectively. In the test data, R<sup>2</sup> and RMSE values were 0.26, 0.11, 0.10 and 11.8 %, 6.74 %, 13.71 % respectively.</p><p>There are high differences between RMSE values of training and test data sets. This event may be caused by the small sample size and to be discussed subject in different studies. High resolution (30 m) data of clay, silt, and sand contents can be useful for hydrological studies and for the preparation of land use plans. Digital soil maps can guide policymakers in creating site-specific land management plans. As well as it can be used for monitoring soil fertility and providing ecosystem services. This study revealed important results regarding the use of digital soil mapping in practice with its analytical and statistical accuracy.</p>


Sign in / Sign up

Export Citation Format

Share Document