Does Diapirism Influence Greenhouse Gas Production on Patterned Ground in the High Arctic?

2015 ◽  
Vol 79 (3) ◽  
pp. 889-895 ◽  
Author(s):  
Martin E. Brummell ◽  
Amanda Guy ◽  
Steven D. Siciliano
Author(s):  
Evangeline Fisher

Enhanced precipitation and higher temperatures are expected in the Arctic as the result of future climatic warming. To understand future contributions of high‐arctic ecosystems to the climate system, we need to understand the feedbacks between climate and greenhouse gas production, and how they might vary between plant community types distributed along soil moisture gradients. We incubated intact soil cores in the laboratory to explore the temperature sensitivity of soil greenhouse gas (CO2, CH4, N2O) production across the three main plant community types of Cape Bounty, Nunavut: polar desert, mesic tundra and wet sedge. Two sets of cores (0‐10 cm mineral soil) were incubated in the laboratory at 4, 8, and 12°C for one month. We also measured plant community differences in soil thermal regimes for one year. Mean field temperatures were highest in the polar desert during the summer months, while temperatures in the mesic tundra were lowest during this time. In the winter, soil temperatures were lowest in the polar desert and highest in the wet sedge communities. Initial incubation results demonstrate Q10 values for CO2 production ranging from 2.18 in wet sedge to 8.67 in polar desert soils. We observed a Q10 of 4.03 for CH4 output in mesic tundra soils and a Q10 of 16.42 for N2O output in wet sedge soils. Our results suggest that use of single Q10 values to predict future greenhouse gas emissions from high‐arctic ecosystems would likely underestimate the contribution of these ecosystems to the global climate system in a warmer climate.


2014 ◽  
Vol 68 ◽  
pp. 158-165 ◽  
Author(s):  
Martin E. Brummell ◽  
Richard E. Farrell ◽  
Sarah P. Hardy ◽  
Steven D. Siciliano

2019 ◽  
Vol 5 (4) ◽  
pp. 185-201 ◽  
Author(s):  
Ioan Wagner ◽  
Jacqueline K.Y. Hung ◽  
Allison Neil ◽  
Neal A. Scott

Climate in high latitude environments is predicted to undergo a pronounced warming and increase in precipitation, which may influence the terrestrial moisture gradients that affect vegetation distribution. Vegetation cover can influence rates of greenhouse gas production through differences in microbial communities, plant carbon uptake potential, and root transport of gases out of the soil into the atmosphere. To predict future changes in greenhouse gas production from High Arctic ecosystems in response to climate change, it is important to understand the interaction between trace gas fluxes and vegetation cover. During the growing seasons of 2008 and 2009, we used dark static chambers to measure CH4 and N2O fluxes and CO2 emissions at Cape Bounty, Melville Island, NU, across a soil moisture gradient, as reflected by their vegetation cover. In both years, wet sedge had the highest rates of emission for all trace gases, followed by the mesic tundra ecosystem. CH4 consumption was highest in the polar semi-desert, correlating positively with temperature and negatively with moisture. Our findings demonstrate that net CH4 uptake may be largely underestimated across the Arctic due to sampling bias towards wetlands. Overall, greenhouse gas flux responses vary depending on different environmental drivers, and the role of vegetation cover needs to be considered in predicting the trajectory of greenhouse gas uptake and release in response to a changing climate.


2013 ◽  
Vol 27 (2) ◽  
pp. 567-577 ◽  
Author(s):  
Jason J. Venkiteswaran ◽  
Sherry L. Schiff ◽  
Vincent L. St. Louis ◽  
Cory J. D. Matthews ◽  
Natalie M. Boudreau ◽  
...  

1999 ◽  
Vol 99 (1) ◽  
pp. 19-26
Author(s):  
Thomas Friborg ◽  
Birger Ulf Hansen ◽  
Claus Nordstroem ◽  
Henrik Soegaard

2021 ◽  
Author(s):  
Juliet Falco Ajambo-Doherty

An existing whole-system model based on changes in dissolved N₂ concentration was modified for lentic systems. Field validations carried out at Christie Lake in Dundas, ON and Turtle Pond in Stoney Creek, ON (Canada). New model inputs included air temperature, atmospheric pressure, relative humidity, wind velocity, and Schmidt number. Mont Carlo analysis was integrated into the model to better constrain error in model estimates of denitrification, whole-system metabolism, and greenhouse gas production. Denitrification rates ranged from -419-4415 µmol N.m-².h-¹ in Christie Lake and from 10-74 µmol N.m-².h-¹ in Turtle Pond. N₂O production ranged from 915-10,635 nmol N.m-².h-¹ in Christie Lake and from -344-131 nmol N.m-².h-¹ in Turtle Pond. The whole-system model allows for the examination of biogeochemical processes at ecologically significant temporal and spatial scales.


2014 ◽  
Vol 71 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Alvaro Pires da Silva ◽  
Bruce C. Ball ◽  
Cássio Antonio Tormena ◽  
Neyde Fabiola Balarezo Giarola ◽  
Rachel Muylaert Locks Guimarães

2017 ◽  
Vol 64 (5) ◽  
pp. 654-667 ◽  
Author(s):  
Gianluigi Mazza ◽  
Alessandro Elio Agnelli ◽  
Maria Costanza Andrenelli ◽  
Alessandra Lagomarsino

Sign in / Sign up

Export Citation Format

Share Document