Impacts of Intensified Cropping Systems on Soil Water Use by Spring Wheat

2019 ◽  
Vol 83 (4) ◽  
pp. 1188-1199 ◽  
Author(s):  
Jonathan J. Halvorson ◽  
David W. Archer ◽  
Mark A. Liebig ◽  
Kathleen M. Yeater ◽  
Donald L. Tanaka
2012 ◽  
Vol 92 (4) ◽  
pp. 803-807 ◽  
Author(s):  
P. R. Miller ◽  
J. A. Holmes

Miller, P. R. and Holmes, J. A. 2012. Short Communication: Comparative soil water use by annual crops at a semiarid site in Montana. Can. J. Plant Sci. 92: 803–807. Results for soil water use in the semiarid northern Great Plains are presented in detailed tabular format for 15 crops in an ideal environment for comparative water use assessment. The effective rooting depth of winter wheat (Triticum aestivum L.) varied relative to spring wheat; it was often similar and never less. Sunflower (Helianthus annuus L.) averaged 43 mm greater soil water use below 0.9 m compared with spring wheat. Conversely, lentil (Lens culinaris Medik.) and pea (Pisum sativum L.) averaged 27 mm and 48 mm less soil water than spring wheat to a 1.2-m soil depth, respectively. Observed differences in effective rooting depth for alternative crops carry important implications for wheat-based cropping systems.


2005 ◽  
Vol 85 (4) ◽  
pp. 877-888 ◽  
Author(s):  
Paul G. Jefferson ◽  
Herb W. Cutforth

Crested wheatgrass (Agropyron cristatum L. Gaertn.) and alfalfa (Medicago sativa L.) are introduced forage species used for hay and grazing by cattle across western Canada. These species are well adapted to the semiarid region but their long-term responses to water stress have not been previously compared. Two alfalfa cultivars with contrasting root morphology (tap-rooted vs. creeping-rooted) and two crested wheatgrass (CWG) cultivars with different ploidy level (diploid vs. tetraploid) were compared with continuously cropped spring wheat (Triticum aestivum L.) for 6 yr at a semiarid location in western Canada. Soil water depletion, forage yield, water use efficiency, leaf water potential, osmotic potential and turgor were compared. There were no consistent differences between cultivars within alfalfa or CWG for variables measured. However, these two species exhibit different water stress response strategies. Leaf water potential of CWG was lower during midday stress period than that of alfalfa or wheat. Alfalfa apparently had greater capacity to osmotically adjust to avoid midday water stress and maintain higher turgor. Soil water use patterns changed as the stands aged. In the initial years of the trial, forage crops used soil water from upper layers of the profile. In later years, soil water was depleted down to 3 m by alfalfa and to 2 m by crested wheatgrass. Alfalfa was able to deplete soil water to lower concentrations than crested wheatgrass or wheat. Soil water depletion by wheat during the non-active growth season (after harvest to fall freeze-up) was much less than for CWG or alfalfa as expected for annual vs. perennial crops. As a result, more soil water was available to wheat during its active growth period. In the last 3 yr, the three species depleted all available soil water. Forage yield responses also changed over time. In the initial 3 yr, crested wheatgrass yielded as much as or more than alfalfa. For the last 3 yr of the experiment, alfalfa yielded more forage than crested wheatgrass. Forage crops deplete much more soil water during periods of aboveground growth dormancy than wheat. Water use efficiency of crested wheatgrass declined with stand age compared with fertilized continuous spring wheat. Alfalfa exhibited deep soil water extraction and apparent osmotic adjustment in response to water stress while CWG exhibited tolerance of low water potential during stress. Key words: forage yield, soil water, water potential, water use, water use efficiency, drought


1994 ◽  
Vol 74 (1) ◽  
pp. 85-92 ◽  
Author(s):  
R. C. Izaurralde ◽  
D. S. Chanasyk ◽  
N. G. Juma

Soil water limits plant growth in the Canadian Prairie Provinces. Efficient use of soil water is, therefore, paramount in crop production. Two 2-yr field studies were conducted (i) to determine the effects of crop selection and cropping practice on the temporal and spatial distribution of soil water and (ii) to quantify water use and water-use efficiencies (WUE) of alternative crop/cropping systems for a subhumid region of Alberta. The first study was at the Ellerslie Research Station on an Orthic Black Chernozemic and the second at the University of Alberta Breton Plots on an Orthic Gray Luvisol. At each site three annual crops/cropping systems [barley (Hordeum vulgare L.), barley intercropped with field pea (Pisum sativum L.), and faba bean (Vicia faba L.)] and a perennial forage [creeping red fescue (Festuca rubra)] were grown in 1987 and in 1988. At Ellerslie, tillage methods to grow annual crops were conventional and zero tillage. At Breton, the two tillage methods used were: (i) conventional and (ii) deep tillage (to enrich the surface horizon with clay from the subsoil). The experimental design used was a split plot with four replications. Soil water was measured by neutron attenuation. Evapotranspiration was calculated as the change in soil water to 0.80-m depth plus precipitation. Soil water changes were more closely associated with the kind of crop grown than with the method of tillage used. The barley/field pea intercrop exhibited a pattern of water use similar to barley. Greater water-use efficiency measured in the intercrop system was attributed to differences in canopy structure and plant biomass production. Faba bean and red fescue had lower WUE than barley and the intercrop. The water requirement by faba bean was close to that of red fescue and related to leaf area development. Small tillage effects on soil water were observed during 1988. Soil water under zero tillage was greater than under conventional tillage. Faba bean and red fescue are likely to succeed more in agro-ecological regions such as Breton. Further studies are required to improve our understanding of the effects of these cropping systems on water resources when they are used in rotational-production systems. Key words: Barley, field pea, faba bean, creeping red fescue, conventiional tillage, zero tillage, deep tillage, water-use efficiency


2010 ◽  
Vol 90 (4) ◽  
pp. 489-497 ◽  
Author(s):  
H W Cutforth ◽  
P G Jefferson ◽  
C A Campbell ◽  
R H Ljunggren

In the semiarid prairie of western Canada, there is renewed interest for including short durations (≤3 yr) of perennial forage in rotations with annual crops. However, there are producers who want to grow longer durations (≥4 yr) of perennial forages in rotational systems. Therefore, we assessed spring wheat (Triticum aestivum L.) yield, grain protein, and water use efficiency following 6 yr of either crested wheatgrass [Agropyron cristatum (L.) Gaertn.], or alfalfa (Medicago sativa L.), or wheat, and then 1 yr of fallow. Yield, water use, and water use efficiency were significantly lower in the first year of spring wheat production (2000) when the prior crop was crested wheatgrass or alfalfa than when it was wheat. In the second year (2001), which was a near record drought year, wheat yield and water use were significantly lower when the prior crop was alfalfa than when it was grass or wheat. From 2002 to 2005, there were no consistent differences in water use, water use efficiency, or yield of wheat due to the prior perennial crop. Wheat grain protein concentration was significantly higher following alfalfa compared with following crested wheatgrass or continuous spring wheat from 2000 to 2005. This effect was attributed to the higher N-supplying power of the soil following alfalfa. Soil water content below the rooting depth of most annual crops (≥120 cm depth) was reduced by the prior alfalfa crop, and there was no evidence from 2000 to 2005 that soil water recharge was occurring below the 150-cm depth. Key words: Semiarid prairie, alfalfa, grass, spring wheat, yield, protein, water use


2001 ◽  
Vol 52 (1) ◽  
pp. 57 ◽  
Author(s):  
S. Asseng ◽  
F. X. Dunin ◽  
I. R. P. Fillery ◽  
D. Tennant ◽  
B. A. Keating

High rates of deep drainage in Western Australia are contributing to groundwater recharge and secondary salinity. Strategies are being sought to increase water use in cropping systems and to reduce deep drainage. Quantifying potential drainage through measurements is hampered by the high degree of complexity of these systems as a result of diverse soil types, a range of crops, and in particular the inherent seasonal variability. Simulation models can provide the appropriate means to extrapolate across time and space. The Agricultural Production Systems Simulator (APSIM) was used to explore the effect of alternative agronomic practices on wheat production and deep drainage for representative soils and rainfall regions of the central wheatbelt of Western Australia. Soil water profiles were reset each year to the lower limit of plant-available water, assuming maximum water use in the previous crop. The long-term simulation studies showed that management practices with N fertiliser directed at yield increase were most effective in achieving these aims in the medium to high rainfall regions. The corresponding effect for drainage reduction was marginal. The small effect on drainage control associated with production increase can be traced to the effect of rainfall distribution with major occurrences of both rainfall and drainage during winter (June–August) coinciding with the lowest potential atmospheric demand for evapotranspiration, in combination with low water-holding capacity soils. Nitrogen-induced increases in crop transpiration were in conjunction with reduced soil evaporation, which increased water use efficiency and occurred mostly after the main drainage period, but had little effect on deep drainage within the season. Similar outcomes of enhanced productivity with minor impact on deep drainage were noted with crops sown at different times and with a hypothetical wheat crop having a deeper rooting system. Simulations without resetting soil water each year enabled the quantification of potential carryover effects on long-term average deep drainage. The carry-over of soil water left behind at crop harvest reduced the water storage capacity of the soil in a subsequent year and could increase long-term deep drainage substantially, depending on soil type. Improved management increased late water use in the high rainfall region, in particular on better water-holding soils, and could largely reduce this carry-over effect. The current wheat-based cropping systems, even with alternative management practices, continue to be a major threat to sustainability on the low water-holding soils in the wheatbelt of Western Australia, as a main cause of secondary salinity.


1997 ◽  
Vol 77 (1) ◽  
pp. 83-90 ◽  
Author(s):  
B. G. McConkey ◽  
D. J. Ulrich ◽  
F. B. Dyck

A study was conducted on a 4-m-high ridge in southwestern Saskatchewan to determine the relationship of slope position with the soil water regime and spring wheat (Triticumaestivum L.) production and to determine if those relationships were altered by subsoiling. In all years, available soil water in the spring to 120 cm increased significantly with distance upslope. This pattern was attributed to residual subsoil water in the rooting zone that had not been used by previous crops in a long-term crop-fallow rotation. After 3 yr of annual spring wheat production, soil water to 1.2 m at all slope positions approximately equalled the water content wilting point (4.0 MPa) water content, showing this residual water had been largely consumed. Apparent use of soil water between seeding and harvest at the upper slope positions was equal to or greater than that at the lower slope positions. Over-winter soil water conservation, using tall (≥ 30-cm-high) wheat stubble for snow trapping, at the upper slope positions was equal to or greater than that at the lower slope positions. In the non-drought years of 1987 and 1989, wheat yields and crop water use efficiency increased significantly with distance downslope. Since these slope effects were not related to water use or availability, they were attributed to higher soil productivity, probably related to more historical net erosion with distance upslope. During the drought year of 1988, wheat yields and water use efficiency were greatest at the upslope positions, but these results were confounded by uneven crop emergence. Subsoiling to 35 cm or deeper increased the amount and depth of infiltration of water in years with near-average November–April precipitation. Subsoiling had little effect on wheat yields and no effect on crop water use. Key words: Landscape, wheat, productivity, soil moisture


Sign in / Sign up

Export Citation Format

Share Document