secondary salinity
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 0)

2020 ◽  
Vol 12 (24) ◽  
pp. 4043
Author(s):  
Hongyi Li ◽  
Xinlu Liu ◽  
Bifeng Hu ◽  
Asim Biswas ◽  
Qingsong Jiang ◽  
...  

Information on spatial, temporal, and depth variability of soil salinity at field and landscape scales is important for a variety of agronomic and environment concerns including irrigation in arid and semi-arid areas. However, challenges remain in characterizing and monitoring soil secondary salinity as it can largely be impacted by managements including irrigation and mulching in addition to natural factors. The objective of this study is to evaluate apparent electrical conductivity (ECa)-directed soil sampling as a basis for monitoring management-induced spatio-temporal change in soil salinity in three dimensions. A field experiment was conducted on an 18-ha saline-sodic field from Alar’s Agricultural Science and Technology Park, China between March, and November 2018. Soil ECa was measured using an electromagnetic induction (EMI) sensor for four times over the growing season and soil core samples were collected from 18 locations (each time) selected using EMI survey data as a-priori information. A multi-variate regression-based predictive relationship between ECa and laboratory-measured electrical conductivity (ECe) was used to predict EC with confidence (R2 between 0.82 and 0.99). A three-dimensional inverse distance weighing (3D-IDW) interpolation clearly showed a strong variability in space and time and with depths within the study field which were mainly attributed to the human management factors including irrigation, mulching, and uncovering of soils and natural factors including air temperature, evaporation, and groundwater level. This study lays a foundation of characterizing secondary salinity at a field scale for precision and sustainable management of agricultural lands in arid and semi-arid areas.


2019 ◽  
Vol 78 (15) ◽  
Author(s):  
P. C. Moharana ◽  
R. S. Singh ◽  
S. K. Singh ◽  
B. L. Tailor ◽  
R. K. Jena ◽  
...  

2015 ◽  
Vol 74 ◽  
pp. 398-403 ◽  
Author(s):  
Khairia Khengaoui ◽  
Mahfoud Hadj Mahammed ◽  
Youcef Touil ◽  
Abdeltif Amrane

Soil Research ◽  
2011 ◽  
Vol 49 (5) ◽  
pp. 408 ◽  
Author(s):  
P. E. Tolmie ◽  
D. M. Silburn ◽  
A. J. W. Biggs

Increases in deep drainage below the root-zone can lead to secondary salinity. Few data were available for drainage under dryland cropping and pastures in the Queensland Murray–Darling Basin (QMDB) before this study. Modelled estimates were available; however, without measured drainage these could not be validated. Soil chloride (Cl) mass-balance was used to provide an extensive survey of deep drainage. The method is ‘backward-looking’ and can detect low rates of drainage over longer times. Soil Cl and other soil properties were collated for a number of soils, mostly Vertosols and Sodosols, for paired native vegetation, cropped and sometimes pasture sites, from historical data and new soil sampling. Large amounts of salt and Cl had accumulated under native vegetation (Cl mean 25 t/ha, range 6–54, in 2.4 m depth), due to low rates of drainage. Steady-state Cl balances for native vegetation gave average drainage of 1.2 mm/year at wetter, eastern sites and 0.3 mm/year for Sodosols and Grey Vertosols in drier, western areas. Chloride profiles were mostly of a shape indicating matrix/piston flow. One site (Hermitage fallow trial) appeared to be affected by diffusion of Cl to a watertable. The Cl profiles from 14 longer term cropping sites (18–70 years), mainly used for winter cropping/summer fallow, indicate: (i) large losses of Cl since clearing (mean 50%, range 13-85% for 0–1.5 m soil); and (ii) drainage rates from transient Cl balance are a relatively low percentage of rainfall but are considerably higher than under native vegetation. Drainage averaged 8 mm/year and ranged from 2 to 18 mm/year. This variation is partly explained by rainfall (R2 = 0.63) (500–730 mm/year) and soil plant-available water capacity (R2 = 0.77) (80–300 mm). Deep drainage increases with increasing rainfall and with decreasing available water capacity. Drainage under pasture was less than under cropping but greater than under native vegetation. The deep drainage water (leachate) was of poor quality and will increase salinity if added to good quality groundwater. Leachate at nine sites was too saline to be used (undiluted) for irrigation (>2500 mg Cl/L) and was marginal at the remainder of sites (~800 mg Cl/L). Cropping areas in the QMDB have the precursors for secondary salinity development—high salt loads and an increase in drainage after clearing. The Vertosols and Sodosols studied occur in 90% of croplands in the QMDB. Salinisation will depend on the properties of the underlying regolith and groundwater systems.


2010 ◽  
Vol 46 (5) ◽  
pp. 445-449 ◽  
Author(s):  
Dilfuza Egamberdieva ◽  
Giancarlo Renella ◽  
Stephan Wirth ◽  
Rafiq Islam

Soil Research ◽  
2008 ◽  
Vol 46 (1) ◽  
pp. 62 ◽  
Author(s):  
A. J. W. Biggs ◽  
P. Mottram

The impacts of dryland salinity on landscapes and agriculture are well documented, but few links have been made to public health. A cluster of cases of Ross River Virus (RRV) disease in the vicinity of a dryland salinity expression in the town of Warwick, Queensland, has highlighted the potential role of secondary salinity expressions as breeding zones for mosquitoes, including vector species of RRV. It is suggested that further work is required to investigate the matter in Queensland, particularly in relation to the expansion of urban populations in south-east Queensland into old agricultural lands containing secondary salinity expressions.


Sign in / Sign up

Export Citation Format

Share Document