Slope position and subsoiling effects on soil water and spring wheat yield

1997 ◽  
Vol 77 (1) ◽  
pp. 83-90 ◽  
Author(s):  
B. G. McConkey ◽  
D. J. Ulrich ◽  
F. B. Dyck

A study was conducted on a 4-m-high ridge in southwestern Saskatchewan to determine the relationship of slope position with the soil water regime and spring wheat (Triticumaestivum L.) production and to determine if those relationships were altered by subsoiling. In all years, available soil water in the spring to 120 cm increased significantly with distance upslope. This pattern was attributed to residual subsoil water in the rooting zone that had not been used by previous crops in a long-term crop-fallow rotation. After 3 yr of annual spring wheat production, soil water to 1.2 m at all slope positions approximately equalled the water content wilting point (4.0 MPa) water content, showing this residual water had been largely consumed. Apparent use of soil water between seeding and harvest at the upper slope positions was equal to or greater than that at the lower slope positions. Over-winter soil water conservation, using tall (≥ 30-cm-high) wheat stubble for snow trapping, at the upper slope positions was equal to or greater than that at the lower slope positions. In the non-drought years of 1987 and 1989, wheat yields and crop water use efficiency increased significantly with distance downslope. Since these slope effects were not related to water use or availability, they were attributed to higher soil productivity, probably related to more historical net erosion with distance upslope. During the drought year of 1988, wheat yields and water use efficiency were greatest at the upslope positions, but these results were confounded by uneven crop emergence. Subsoiling to 35 cm or deeper increased the amount and depth of infiltration of water in years with near-average November–April precipitation. Subsoiling had little effect on wheat yields and no effect on crop water use. Key words: Landscape, wheat, productivity, soil moisture

2018 ◽  
Vol 10 (11) ◽  
pp. 1682 ◽  
Author(s):  
Kelly Thorp ◽  
Alison Thompson ◽  
Sara Harders ◽  
Andrew French ◽  
Richard Ward

Improvement of crop water use efficiency (CWUE), defined as crop yield per volume of water used, is an important goal for both crop management and breeding. While many technologies have been developed for measuring crop water use in crop management studies, rarely have these techniques been applied at the scale of breeding plots. The objective was to develop a high-throughput methodology for quantifying water use in a cotton breeding trial at Maricopa, AZ, USA in 2016 and 2017, using evapotranspiration (ET) measurements from a co-located irrigation management trial to evaluate the approach. Approximately weekly overflights with an unmanned aerial system provided multispectral imagery from which plot-level fractional vegetation cover ( f c ) was computed. The f c data were used to drive a daily ET-based soil water balance model for seasonal crop water use quantification. A mixed model statistical analysis demonstrated that differences in ET and CWUE could be discriminated among eight cotton varieties ( p < 0 . 05 ), which were sown at two planting dates and managed with four irrigation levels. The results permitted breeders to identify cotton varieties with more favorable water use characteristics and higher CWUE, indicating that the methodology could become a useful tool for breeding selection.


1992 ◽  
Vol 43 (5) ◽  
pp. 1019 ◽  
Author(s):  
AL Garside ◽  
RJ Lawn ◽  
RC Muchow ◽  
DE Byth

Plant and soil water status, crop water use and water use efficiency, as affected by irrigation treatment, were monitored over two seasons for soybean cv. Ross, sown in the late wet season in the Ord Irrigation Area in north Western Australia. Irrigation treatments were, in both seasons, furrow irrigation after cumulative open pan evaporative losses of 30, 60 120 and 240 mm, and in the second year, an additional treatment, saturated soil culture (continuous furrow irrigation, analogous to irrigation after 0 mm pan evaporation). As expected, during periods of strong evaporative demand plant water status, as indicated by leaf water potential and leaf conductance of water vapour, was consistently greater in the more frequently irrigated treatments, while soil water depletion occurred to greater extent and depth in the less frequently irrigated treatments. However, total soil water use was directly proportional to crop growth, so that there was little evidence that water use efficiency was enhanced by restricting water supply in this environment. Indeed, efficiency of water use even under the continuous furrow irrigation system was comparable with that from other irrigation treatments. The responses are interpreted to imply that there is unlikely to be any economic advantage to the use of limited supplemental irrigation in this environment.


1990 ◽  
Vol 30 (6) ◽  
pp. 817 ◽  
Author(s):  
M Incerti ◽  
GJ O'Leary

In 1986 and 1987 wheat was sown in an experiment at the Mallee Research Station, Walpeup, at 2 times of sowing and with 3 rates of applied nitrogen. Soil cores were taken and trenches excavated to 1.5 m to measure wheat root growth and depth of rooting. Wheat roots penetrated to a maximum depth of 104 cm in crops sown in May, the optimum time of sowing for maximum yield, while delayed sowing reduced total root biomass and limited rooting depth to 73-83 cm. The application of nitrogen fertiliser did not affect either the rooting depth or growth and yield. Significant changes in total soil water content between sowing and harvest only occurred in 1987 with the early and late sown crops reducing the total soil water content by 47 and 99 mm respectively. In 1986, above average rainfall during the growing season caused the early sown crop to accumulate more water below 50 cm than the late sown crop. While total water use was increased only in 1986 with early sowing, crop water use efficiency and yield was greater in both years. The addition of nitrogen had no effect on crop water use or water use efficiency. A survey of wheat crops carried out in 1988 on 10 Mallee farms also found that shallow rooting is widespead. The field experiment and survey data show that, irrespective of sowing time, roots did not penetrate as far down the profile as might be expected, given reported rooting depths commonly in excess of 200 cm on similarly textured soils. This was shown to be associated with high soil pH and salt content. Poor rooting depth of wheat in this environment will restrict the use of stored water and accordingly, calls the practice of fallowing into question.


2020 ◽  
Vol 249 ◽  
pp. 107763 ◽  
Author(s):  
Yang Gao ◽  
Guangcheng Shao ◽  
Jia Lu ◽  
Kun Zhang ◽  
Shiqing Wu ◽  
...  

2005 ◽  
Vol 85 (4) ◽  
pp. 877-888 ◽  
Author(s):  
Paul G. Jefferson ◽  
Herb W. Cutforth

Crested wheatgrass (Agropyron cristatum L. Gaertn.) and alfalfa (Medicago sativa L.) are introduced forage species used for hay and grazing by cattle across western Canada. These species are well adapted to the semiarid region but their long-term responses to water stress have not been previously compared. Two alfalfa cultivars with contrasting root morphology (tap-rooted vs. creeping-rooted) and two crested wheatgrass (CWG) cultivars with different ploidy level (diploid vs. tetraploid) were compared with continuously cropped spring wheat (Triticum aestivum L.) for 6 yr at a semiarid location in western Canada. Soil water depletion, forage yield, water use efficiency, leaf water potential, osmotic potential and turgor were compared. There were no consistent differences between cultivars within alfalfa or CWG for variables measured. However, these two species exhibit different water stress response strategies. Leaf water potential of CWG was lower during midday stress period than that of alfalfa or wheat. Alfalfa apparently had greater capacity to osmotically adjust to avoid midday water stress and maintain higher turgor. Soil water use patterns changed as the stands aged. In the initial years of the trial, forage crops used soil water from upper layers of the profile. In later years, soil water was depleted down to 3 m by alfalfa and to 2 m by crested wheatgrass. Alfalfa was able to deplete soil water to lower concentrations than crested wheatgrass or wheat. Soil water depletion by wheat during the non-active growth season (after harvest to fall freeze-up) was much less than for CWG or alfalfa as expected for annual vs. perennial crops. As a result, more soil water was available to wheat during its active growth period. In the last 3 yr, the three species depleted all available soil water. Forage yield responses also changed over time. In the initial 3 yr, crested wheatgrass yielded as much as or more than alfalfa. For the last 3 yr of the experiment, alfalfa yielded more forage than crested wheatgrass. Forage crops deplete much more soil water during periods of aboveground growth dormancy than wheat. Water use efficiency of crested wheatgrass declined with stand age compared with fertilized continuous spring wheat. Alfalfa exhibited deep soil water extraction and apparent osmotic adjustment in response to water stress while CWG exhibited tolerance of low water potential during stress. Key words: forage yield, soil water, water potential, water use, water use efficiency, drought


2019 ◽  
Author(s):  
Jannis Groh ◽  
Jan Vanderborght ◽  
Thomas Pütz ◽  
Hans-Jörg Vogel ◽  
Ralf Gründling ◽  
...  

Abstract. Future crop production will be affected by climatic changes. In several regions, the projected changes in total rainfall and seasonal rainfall patterns will lead to lower soil water storage (SWS) which in turn affects crop water uptake, crop yield, water use efficiency, grain quality and groundwater recharge. Effects of climate change on those variables depend on the soil properties and were often estimated based on model simulations. The objective of this study was to investigate the response of key variables in four different soils and for two different climates in Germany with different aridity index: 1.09 for the wetter (range: 0.82 to 1.29) and 1.57 for the drier climate (range: 1.19 to 1.77), by using high-precision weighable lysimeters. According to a “space-for-time” concept, intact soil monoliths that were moved to sites with contrasting climatic conditions have been monitored from April 2011 until December 2018. Evapotranspiration was lower for the same soil under the relatively drier climate whereas crop yield was significantly higher, without affecting grain quality. Especially non-productive water losses (evapotranspiration out of the main growing period) were lower which led to a more efficient crop water use in the drier climate. A characteristic decrease of the SWS for soils with a finer texture was observed after a longer drought period under a drier climate. The reduced SWS after the drought remained until the end of the observation period which demonstrates carry-over of drought from one growing season to another and the overall long term effects of single drought events. In the relatively drier climate, water flow at the soil profile bottom showed a small net upward flux over the entire monitoring period as compared to downward fluxes (ground water recharge) or drainage in the relatively wetter climate and larger recharge rates in the coarser- as compared to finer-textured soils. The large variability of recharge from year to year and the long lasting effects of drought periods on SWS imply that long term monitoring of soil water balance components is necessary to obtain representative estimates. Results confirmed a more efficient crop water use under less optimal soil moisture conditions. Long-term effects of changing climatic conditions on the SWS and ecosystem productivity should be considered when trying to develop adaptation strategies in the agricultural sector.


Sign in / Sign up

Export Citation Format

Share Document