Laboratory Evaluation of a Commercial Dielectric Soil Water Sensor

2003 ◽  
Vol 2 (4) ◽  
pp. 650
Author(s):  
Bobbie McMichael ◽  
Robert J. Lascano
2003 ◽  
Vol 2 (4) ◽  
pp. 650-654 ◽  
Author(s):  
Bobbie McMichael ◽  
Robert J. Lascano

2003 ◽  
Vol 2 (4) ◽  
pp. 650-654 ◽  
Author(s):  
B. McMichael ◽  
R. J. Lascano

2003 ◽  
Vol 2 (3) ◽  
pp. 389
Author(s):  
J. M. Basinger ◽  
G. J. Kluitenberg ◽  
J. M. Ham ◽  
J. M. Frank ◽  
P. L. Barnes ◽  
...  

2015 ◽  
Vol 92 (5) ◽  
pp. 582-592 ◽  
Author(s):  
Seth A. Byrd ◽  
Diane L. Rowland ◽  
Jerry Bennett ◽  
Lincoln Zotarelli ◽  
David Wright ◽  
...  

2004 ◽  
Vol 84 (4) ◽  
pp. 431-438 ◽  
Author(s):  
Q. Huang ◽  
O. O. Akinremi ◽  
R. Sri Rajan ◽  
P. Bullock

Accurate in situ determination of soil water content is important in many fields of agricultural, environmental, hydrological, and engineering sciences. As numerous soil water content sensors are available on the market today, the knowledge of their performance will aid users in the selection of appropriate sensors. The objectives of this study were to evaluate five soil water sensors in the laboratory and to determine if laboratory calibration is appropriate for the field. In this study, the performances of five sensors, including the Profile Probe™ (PP), ThetaProbe™ , Watermark™, Aqua-Tel™, and Aquaterr™ were compared in the laboratory. The PP and ThetaProbe™ were more accurate than the other soil water sensors, reproducing soil water content using factory recommended parameters. However, when PP was installed on a loamy sand in the field, the same soil that was used for the laboratory evaluation, it overestimated field soil water, especially at depth. Another laboratory experiment showed that soil water content readings from the PP were strongly influenced by soil bulk density. The higher the soil bulk density, the greater was the overestimation of soil water content. Two regression parameters, a0 and a1, which are used to convert the apparent dielectric constant to volumetric water content, were found to increase linearly with the soil bulk density in the range of 1.2 to 1.6 Mg m-3. Finally, the PP was calibrated in the field and a good calibration function was obtained with an r2 of 0.87 and RMSE of 2.7%. The values of a0 and a1 obtained in the field were different from factory recommended parameters (a0 = 2.4 versus 1.6 while a1 = 12.5 versus 8.4) and were independent of soil depth, bulk density, and texture. As such, individual field calibration will be necessary to obtain precise and accurate measurement of soil water content with this instrument. Key words: Soil water content, Profile Probe, calibration, soil water content sensor


2007 ◽  
Vol 11 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Eugênio F. Coelho ◽  
Delfran B. dos Santos ◽  
Carlos A. V. de Azevedo

This research had as its objective the investigation of an alternative strategy for soil sensor placement to be used in citrus orchards irrigated by micro sprinkler. An experiment was carried out in a Tahiti lemon orchard under three irrigation intervals of 1, 2 and 3 days. Soil water potential, soil water content distribution and root water extraction were monitored by a time-domain-reflectometry (TDR) in several positions in soil profiles radial to the trees. Root length and root length density were determined from digital root images at the same positions in the soil profiles where water content was monitored. Results showed the importance of considering root water extraction in the definition of soil water sensor placement. The profile regions for soil water sensor placement should correspond to the intersection of the region containing at least 80% of total root length and the region of at least 80% of total water extraction. In case of tensiometers, the region of soil water potential above -80 kPa should be included in the intersection.


Sign in / Sign up

Export Citation Format

Share Document