Characterization of Crop Canopies and Water Stress Related Phenomena using Microwave Remote Sensing Methods: A Review

2012 ◽  
Vol 11 (2) ◽  
pp. vzj2011.0138ra ◽  
Author(s):  
Harry Vereecken ◽  
Lutz Weihermüller ◽  
François Jonard ◽  
Carsten Montzka
2019 ◽  
Vol 8 (7) ◽  
pp. 296 ◽  
Author(s):  
Doug Stead ◽  
Davide Donati ◽  
Andrea Wolter ◽  
Matthieu Sturzenegger

The stability and deformation behavior of high rock slopes depends on many factors, including geological structures, lithology, geomorphic processes, stress distribution, and groundwater regime. A comprehensive mapping program is, therefore, required to investigate and assess the stability of high rock slopes. However, slope steepness, rockfalls and ongoing instability, difficult terrain, and other safety concerns may prevent the collection of data by means of traditional field techniques. Therefore, remote sensing methods are often critical to perform an effective investigation. In this paper, we describe the application of field and remote sensing approaches for the characterization of rock slopes at various scale and distances. Based on over 15 years of the experience gained by the Engineering Geology and Resource Geotechnics Research Group at Simon Fraser University (Vancouver, Canada), we provide a summary of the potential applications, advantages, and limitations of varied remote sensing techniques for comprehensive characterization of rock slopes. We illustrate how remote sensing methods have been critical in performing rock slope investigations. However, we observe that traditional field methods still remain indispensable to collect important intact rock and discontinuity condition data.


Clay Minerals ◽  
2008 ◽  
Vol 43 (4) ◽  
pp. 549-560 ◽  
Author(s):  
R. P. Nitzsche ◽  
J. B. Percival ◽  
J. K. Torrance ◽  
J. A. R. Stirling ◽  
J. T. Bowen

AbstractEleven Oxisols with high clay contents, 2.6–59.7 wt.% Fe2O3, and containing hematite, goethite, magnetite and maghemite, from São Paulo, Minas Gerais and Goiás, Brazil, were studied for the purpose of microwave remote sensing applications in the 0.3 to 300 GHz range. Of special interest are: the pseudosand effect caused by Fe-oxide cementation of clusters of soil particles; the mineralogy; and whether the soil magnetic susceptibility affected by ferromagnetic magnetite and maghemite interferes with microwave propagation. Quantitative mineralogical analyses were conducted using X-ray diffraction with Rietveld refinement. Visible, near infrared and short wave infrared spectroscopic analyses were used to characterize the samples qualitatively for comparison with published spectral radiometry results. Quartz (3–88%), hematite (2–36%) and gibbsite (1–40%) occurred in all soils, whereas kaolinite (2–70%) and anatase (2–13%) occurred in nine samples. Ilmenite (1–8%) was found in eight soils and goethite (2–39%) in seven. Of the ferromagnetic minerals, maghemite occurred in seven soils (1–13%) and three contained magnetite (<2%). These results will be applied to the interpretation of the effect of Fe oxides, particularly the ferromagnetic oxides, on microwave interaction with high-Fe soils, with ultimate application to the monitoring of soil water content by microwave remote sensing.


2015 ◽  
Vol 156 ◽  
pp. 310-321 ◽  
Author(s):  
Benjamin J. Vander Jagt ◽  
Michael T. Durand ◽  
Steven A. Margulis ◽  
Edward J. Kim ◽  
Noah P. Molotch

2021 ◽  
Author(s):  
Leung Tsang ◽  
Michael Durand ◽  
Chris Derksen ◽  
Ana P. Barros ◽  
Do-Hyuk Kang ◽  
...  

Abstract. Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 million square km of Earth's surface (31 % of the land area) each year, and is thus an important expression of and driver of the Earth’s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (~ −13 %/decade) as Arctic summer sea ice. More than one-sixth of the world’s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth’s cold regions' ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of snow stored on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations will not be able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high socio-economic value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-Band Synthetic Aperture Radar (SAR) for global monitoring of SWE. We describe radar interactions with snow-covered landscapes, characterization of snowpack properties using radar measurements, and refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimetre-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modelling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, densities, and layering. We describe radar interactions with snow-covered landscapes, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and applications communities on progress made in recent decades, and sets the stage for a new era in SWE remote-sensing from SAR measurements.


1984 ◽  
Vol 16 (3) ◽  
pp. 249-255 ◽  
Author(s):  
Simonetta Paloscia ◽  
Paolo Pampaloni

2018 ◽  
pp. 69-76
Author(s):  
A. Matese ◽  
R. Baraldi ◽  
A. Berton ◽  
C. Cesaraccio ◽  
S.F. Di Gennaro ◽  
...  

2019 ◽  
Vol 38 (7) ◽  
pp. 550-553
Author(s):  
Jorge Parra ◽  
Jonathan Parra ◽  
Marius Necsoiu

The state of the art in predicting tunnel-induced subsidence settlements is based on empirical and analytical methods. Empirical methods are useful when the equations are implemented with host medium properties where tunnels have been excavated. Analytical solutions can predict tunneling-induced ground movements, with the predictions accounting for tunnel radius and depth as well as ground-loss parameters in soft soils. The drawback is that these methods require human intervention, as each model must be adjusted manually by the interpreter until the model signature fits the observed data. It would take tremendous effort to evaluate displacement anomalies detected by remote sensing methods using such forward-modeling methods. Therefore, we present a method based on an inversion algorithm that automatically inverts subsidence signatures for tunnel radius, depth, Poisson's ratio, and the gap parameter. It is an advancement over conventional methods because it does not require a first guess, and it can invert several subsidence signatures in a matter of minutes. The algorithm, coupled with remote sensing-based displacement maps, is a cost-effective solution in operational characterization of displacement anomalies. We demonstrate that observed and predicted subsidence signatures are in good agreement with existing tunnel data in uniform clay and that the inversion parameters correspond to those predicted with forward modeling alone.


Sign in / Sign up

Export Citation Format

Share Document