Joint Assimilation of Surface Temperature and L-Band Microwave Brightness Temperature in Land Data Assimilation

2013 ◽  
Vol 12 (3) ◽  
pp. vzj2012.0072 ◽  
Author(s):  
Xujun Han ◽  
Harrie-Jan Hendricks Franssen ◽  
Xin Li ◽  
Yanlin Zhang ◽  
Carsten Montzka ◽  
...  
2006 ◽  
Vol 7 (5) ◽  
pp. 1126-1146 ◽  
Author(s):  
G. Balsamo ◽  
J-F. Mahfouf ◽  
S. Bélair ◽  
G. Deblonde

Abstract The aim of this study is to test a land data assimilation prototype for the production of a global daily root-zone soil moisture analysis. This system can assimilate microwave L-band satellite observations such as those from the future Hydros NASA mission. The experiments are considered in the framework of the Interaction Soil Biosphere Atmosphere (ISBA) land surface scheme used operationally at the Meteorological Service of Canada for regional and global weather forecasting. A land surface reference state is obtained after a 1-yr global land surface simulation, forced by near-surface atmospheric fields provided by the Global Soil Wetness Project, second initiative (GSWP-2). A radiative transfer model is applied to simulate the microwave L-band passive emission from the surface. The generated brightness temperature observations are distributed in space and time according to the satellite trajectory specified by the Hydros mission. The impact of uncertainties related to the satellite observations, the land surface, and microwave emission models is investigated. A global daily root-zone soil moisture analysis is produced with a simplified variational scheme. The applicability and performance of the system are evaluated in a data assimilation cycle in which the L-band simulated observations, generated from a land surface reference state, are assimilated to correct a prescribed initial root-zone soil moisture error. The analysis convergence is satisfactory in both summer and winter cases. In summer, when considering a 3-K observation error, 90% of land surface converges toward the reference state with a soil moisture accuracy better than 0.04 m3 m−3 after a 4-week assimilation cycle. A 5-K observation error introduces 1-week delay in the convergence. A study of the analysis error statistics is performed for understanding the properties of the system. Special features associated with the interactions between soil water and soil ice, and the presence of soil moisture vertical gradients, are examined.


2019 ◽  
Vol 11 (19) ◽  
pp. 2265 ◽  
Author(s):  
Yonghwan Kwon ◽  
Barton A. Forman ◽  
Jawairia A. Ahmad ◽  
Sujay V. Kumar ◽  
Yeosang Yoon

This study explores the use of a support vector machine (SVM) as the observation operator within a passive microwave brightness temperature data assimilation framework (herein SVM-DA) to enhance the characterization of snow water equivalent (SWE) over High Mountain Asia (HMA). A series of synthetic twin experiments were conducted with the NASA Land Information System (LIS) at a number of locations across HMA. Overall, the SVM-DA framework is effective at improving SWE estimates (~70% reduction in RMSE relative to the Open Loop) for SWE depths less than 200 mm during dry snowpack conditions. The SVM-DA framework also improves SWE estimates in deep, wet snow (~45% reduction in RMSE) when snow liquid water is well estimated by the land surface model, but can lead to model degradation when snow liquid water estimates diverge from values used during SVM training. In particular, two key challenges of using the SVM-DA framework were observed over deep, wet snowpacks. First, variations in snow liquid water content dominate the brightness temperature spectral difference (ΔTB) signal associated with emission from a wet snowpack, which can lead to abrupt changes in SWE during the analysis update. Second, the ensemble of SVM-based predictions can collapse (i.e., yield a near-zero standard deviation across the ensemble) when prior estimates of snow are outside the range of snow inputs used during the SVM training procedure. Such a scenario can lead to the presence of spurious error correlations between SWE and ΔTB, and as a consequence, can result in degraded SWE estimates from the analysis update. These degraded analysis updates can be largely mitigated by applying rule-based approaches. For example, restricting the SWE update when the standard deviation of the predicted ΔTB is greater than 0.05 K helps prevent the occurrence of filter divergence. Similarly, adding a thin layer (i.e., 5 mm) of SWE when the synthetic ΔTB is larger than 5 K can improve SVM-DA performance in the presence of a precipitation dry bias. The study demonstrates that a carefully constructed SVM-DA framework cognizant of the inherent limitations of passive microwave-based SWE estimation holds promise for snow mass data assimilation.


2020 ◽  
Vol 148 (6) ◽  
pp. 2433-2455
Author(s):  
Min-Jeong Kim ◽  
Jianjun Jin ◽  
Amal El Akkraoui ◽  
Will McCarty ◽  
Ricardo Todling ◽  
...  

Abstract Satellite radiance observations combine global coverage with high temporal and spatial resolution, and bring vital information to NWP analyses especially in areas where conventional data are sparse. However, most satellite observations that are actively assimilated have been limited to clear-sky conditions due to difficulties associated with accounting for non-Gaussian error characteristics, nonlinearity, and the development of appropriate observation operators for cloud- and precipitation-affected satellite radiance data. This article provides an overview of the development of the Gridpoint Statistical Interpolation (GSI) configurations to assimilate all-sky data from microwave imagers such as the GPM Microwave Imager (GMI) in the NASA Goddard Earth Observing System (GEOS). Electromagnetic characteristics associated with their wavelengths allow microwave imager data to be highly sensitive to precipitation. Therefore, all-sky data assimilation efforts described in this study are primarily focused on utilizing these data in precipitating regions. To utilize data in cloudy and precipitating regions, state and analysis variables have been added for ice cloud, liquid cloud, rain, and snow. This required enhancing the observation operator to simulate radiances in heavy precipitation, including frozen precipitation. Background error covariances in both the central analysis and EnKF analysis in the GEOS hybrid 4D-EnVar system have been expanded to include hydrometeors. In addition, the bias correction scheme was enhanced to reduce biases associated with thick clouds and precipitation. The results from single observation experiments demonstrate the capability of assimilating all-sky microwave brightness temperature data in GEOS both when the model forecast produces excessive precipitation and too little precipitation. Additional experiments show that hydrometeors and dynamic variables such as winds and pressure are adjusted in physically consistent ways in response to the assimilation.


Sign in / Sign up

Export Citation Format

Share Document