Development and Calibration of Dual-Permeability Flow Models with Discontinuous Fault Networks

2014 ◽  
Vol 13 (8) ◽  
pp. vzj2013.10.0183 ◽  
Author(s):  
Donald M. Reeves ◽  
Rishi Parashar ◽  
Karl Pohlmann ◽  
Chuck Russell ◽  
Jenny Chapman
2000 ◽  
Vol 627 ◽  
Author(s):  
M. E. Swanson ◽  
M. Landreman ◽  
J. Michel ◽  
J. Kakalios

ABSTRACTWhen an initially homogeneous binary mixture of granular media such as fine and coarse sand is poured near the closed edge of a “quasi-two-dimensional” Hele-Shaw cell consisting of two vertical transparent plates held a narrow distance apart, the mixture spontaneously forms alternating segregated layers. Experimental measurements of this stratification effect are reported in order to determine which model, one which suggests that segregation only occurs when the granular material contained within a metastable heap between the critical and maximum angle of repose avalanches down the free surface, or one for which the segregation results from smaller particles becoming trapped in the top surface and being removed from the moving layer during continuous flow. The result reported here indicate that the Metastable Wedge model provides a natural explanation for the initial mixed zone which precedes the formation of the layers, while the Continuous Flow model explains the observed upward moving kink of segregated material for higher granular flux rates, and that both mechansims are necessary in order to understand the observed pairing of segregated layersfor intermediate flow rates and cell separations.


2017 ◽  
Author(s):  
Boris V. Dzyubenko ◽  
Guenrikh A. Dreitser

Author(s):  
Monish Tandale ◽  
Jinwhan Kim ◽  
Karthik Palaniappan ◽  
P. K. Menon ◽  
Jay Rosenberger ◽  
...  

2012 ◽  
Vol 9 (1) ◽  
pp. 175-180
Author(s):  
Yu.D. Chashechkin

According to the results of visualization of streams, the existence of structures in a wide range of scales is noted: from galactic to micron. The use of a fundamental system of equations is substantiated based on the results of comparing symmetries of various flow models with the usage of theoretical group methods. Complete solutions of the system are found by the methods of the singular perturbations theory with a condition of compatibility, which determines the characteristic equation. A comparison of complete solutions with experimental data shows that regular solutions characterize large-scale components of the flow, a rich family of singular solutions describes formation of the thin media structure. Examples of calculations and observations of stratified, rotating and multiphase media are given. The requirements for the technique of an adequate experiment are discussed.


2007 ◽  
Vol 5 ◽  
pp. 273-278
Author(s):  
V.Yu Liapidevskii

Nonequilibrium flows of an inhomogeneous liquid in channels and pipes are considered in the long-wave approximation. Nonlinear dispersion hyperbolic flow models are derived allowing taking into account the influence of internal inertia during the relative motion of phases upon the structure of nonlinear wave fronts. The asymptotic derivation of dispersion hyperbolic models is shown on the example of classical Boussinesq equations. It is shown that the hyperbolic approximation of the equations has the same order of accuracy as the primary model.


Sign in / Sign up

Export Citation Format

Share Document