scholarly journals Equation of state and spin crossover of (Mg,Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary

2016 ◽  
Vol 101 (5) ◽  
pp. 1084-1093 ◽  
Author(s):  
Natalia V. Solomatova ◽  
Jennifer M. Jackson ◽  
Wolfgang Sturhahn ◽  
June K. Wicks ◽  
Jiyong Zhao ◽  
...  
2021 ◽  
Vol 119 (1) ◽  
pp. e2119001119
Author(s):  
Youjun Zhang ◽  
Kai Luo ◽  
Mingqiang Hou ◽  
Peter Driscoll ◽  
Nilesh P. Salke ◽  
...  

Light elements in Earth’s core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron–electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of ∼100 to 110 W⋅m−1⋅K−1 for liquid Fe-9Si near the topmost outer core. If Earth’s core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core–mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core–mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core.


2014 ◽  
Vol 199 (1) ◽  
pp. 164-177 ◽  
Author(s):  
Sanne Cottaar ◽  
Mingming Li ◽  
Allen K. McNamara ◽  
Barbara Romanowicz ◽  
Hans-Rudolf Wenk

2021 ◽  
Author(s):  
Hannah Rogers ◽  
Ciaran Beggan ◽  
Kathryn Whaler

<p>Spherical Slepian functions (or ‘Slepian functions’) are mathematical functions which can be used to decompose potential fields, as represented by spherical harmonics, into smaller regions covering part of a spherical surface. This allows a spatio-spectral trade-off between aliasing of the signal at the boundary edges while constraining it within a region of interest. While Slepian functions have previously been applied to geodetic and crustal magnetic data, this work further applies Slepian functions to flows on the core-mantle boundary. There are two main reasons for restricting flow models to certain parts of the core surface. Firstly, we have reason to believe that different dynamics operate in different parts of the core (such as under LLSVPs) while, secondly, the modelled flow is ambiguous over certain parts of the surface (when applying flow assumptions). Spherical Slepian functions retain many of the advantages of our usual flow description, concerning for example the boundary conditions it must satisfy, and allowing easy calculation of the power spectrum, although greater initial computational effort is required.</p><p><br>In this work, we apply Slepian functions to core flow models by directly inverting from satellite virtual observatory magnetic data into regions of interest. We successfully demonstrate the technique and current short comings by showing whole core surface flow models, flow within a chosen region, and its corresponding complement. Unwanted spatial leakage is generated at the region edges in the separated flows but to less of an extent than when using spherical Slepian functions on existing flow models. The limited spectral content we can infer for core flows is responsible for most, if not all, of this leakage. Therefore, we present ongoing investigations into the cause of this leakage, and to highlight considerations when applying Slepian functions to core surface flow modelling.</p>


1972 ◽  
Vol 62 (4) ◽  
pp. 1063-1071 ◽  
Author(s):  
R. D. Adams

Abstract The phases P2KP, P3KP, and P4KP are well recorded from the Novaya Zemlya nuclear explosion of October 14, 1970, with the branch AB at distances of up to 20° beyond the theoretical end point A. This extension is attributed to diffraction around the core-mantle boundary. A slowness dT/dΔ = 4.56±0.02 sec/deg is determined for the AB branch of P4KP, in excellent agreement with recent determinations of the slowness of diffracted P. This slowness implies a velocity of 13.29±0.06 km/sec at the base of the mantle, and confirms recent suggestions of a low-velocity channel above the core-mantle boundary. There is evidence that arrivals recorded before the AB branch of P2KP may lie on two branches, with different slownesses. The ratio of amplitudes of successive orders of multiple inner core reflections gives a lower bound of about 2200 for Q in the outer core.


1998 ◽  
Vol 160 (3-4) ◽  
pp. 551-562 ◽  
Author(s):  
Catherine Mériaux ◽  
Amotz Agnon ◽  
John R. Lister

Sign in / Sign up

Export Citation Format

Share Document