High-Resolution Simulations of Mediterranean Sea Physical Oceanography Under Current and Scenario Climate Conditions: Model Description, Assessment and Scenario Analysis

Author(s):  
Tomas Lovato ◽  
Marcello Vichi ◽  
Paolo Oddo
2021 ◽  
Vol 561 ◽  
pp. 110057
Author(s):  
Hana Uvanović ◽  
Bernd R. Schöne ◽  
Krešimir Markulin ◽  
Ivica Janeković ◽  
Melita Peharda

2015 ◽  
Vol 7 (2) ◽  
pp. 275-287 ◽  
Author(s):  
C. Funk ◽  
A. Verdin ◽  
J. Michaelsen ◽  
P. Peterson ◽  
D. Pedreros ◽  
...  

Abstract. Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate Hazards Group's Precipitation Climatology version 1 (CHPclim v.1.0, doi:10.15780/G2159X), is shown to compare favorably with similar global climatology products, especially in areas with complex terrain and low station densities.


2021 ◽  
Vol 431 ◽  
pp. 106372
Author(s):  
Eleonora Martorelli ◽  
Alessandro Bosman ◽  
Daniele Casalbore ◽  
Francesco Chiocci ◽  
Aida Maria Conte ◽  
...  

2019 ◽  
Vol 887 ◽  
pp. 579-586
Author(s):  
Peter Juras ◽  
Radoslav Ponechal

This paper describes measurement units on the building façade, which enable the possibility to conduct a full-scale measurement with a very high resolution of the outdoor climate parameters around the building. The façade of the Research center building, which is a part of University of Zilina campus, is equipped with 36 weather stations to measure the outdoor climate conditions and impact of the building on the approaching wind flow and air temperature distribution, solar radiance impact on the façade, etc. In this article, the wind flow around the building in different heights is monitored, analyzed and compared to the free wind flow.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 202 ◽  
Author(s):  
Antonio Ricchi ◽  
Mario Marcello Miglietta ◽  
Davide Bonaldo ◽  
Guido Cioni ◽  
Umberto Rizza ◽  
...  

Between 19 and 22 January 2014, a baroclinic wave moving eastward from the Atlantic Ocean generated a cut-off low over the Strait of Gibraltar and was responsible for the subsequent intensification of an extra-tropical cyclone. This system exhibited tropical-like features in the following stages of its life cycle and remained active for approximately 80 h, moving along the Mediterranean Sea from west to east, eventually reaching the Adriatic Sea. Two different modeling approaches, which are comparable in terms of computational cost, are analyzed here to represent the cyclone evolution. First, a multi-physics ensemble using different microphysics and turbulence parameterization schemes available in the WRF (weather research and forecasting) model is employed. Second, the COAWST (coupled ocean–atmosphere wave sediment transport modeling system) suite, including WRF as an atmospheric model, ROMS (regional ocean modeling system) as an ocean model, and SWAN (simulating waves in nearshore) as a wave model, is used. The advantage of using a coupled modeling system is evaluated taking into account air–sea interaction processes at growing levels of complexity. First, a high-resolution sea surface temperature (SST) field, updated every 6 h, is used to force a WRF model stand-alone atmospheric simulation. Later, a two-way atmosphere–ocean coupled configuration is employed using COAWST, where SST is updated using consistent sea surface fluxes in the atmospheric and ocean models. Results show that a 1D ocean model is able to reproduce the evolution of the cyclone rather well, given a high-resolution initial SST field produced by ROMS after a long spin-up time. Additionally, coupled simulations reproduce more accurate (less intense) sea surface heat fluxes and a cyclone track and intensity, compared with a multi-physics ensemble of standalone atmospheric simulations.


Sign in / Sign up

Export Citation Format

Share Document