scholarly journals Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea

Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 202 ◽  
Author(s):  
Antonio Ricchi ◽  
Mario Marcello Miglietta ◽  
Davide Bonaldo ◽  
Guido Cioni ◽  
Umberto Rizza ◽  
...  

Between 19 and 22 January 2014, a baroclinic wave moving eastward from the Atlantic Ocean generated a cut-off low over the Strait of Gibraltar and was responsible for the subsequent intensification of an extra-tropical cyclone. This system exhibited tropical-like features in the following stages of its life cycle and remained active for approximately 80 h, moving along the Mediterranean Sea from west to east, eventually reaching the Adriatic Sea. Two different modeling approaches, which are comparable in terms of computational cost, are analyzed here to represent the cyclone evolution. First, a multi-physics ensemble using different microphysics and turbulence parameterization schemes available in the WRF (weather research and forecasting) model is employed. Second, the COAWST (coupled ocean–atmosphere wave sediment transport modeling system) suite, including WRF as an atmospheric model, ROMS (regional ocean modeling system) as an ocean model, and SWAN (simulating waves in nearshore) as a wave model, is used. The advantage of using a coupled modeling system is evaluated taking into account air–sea interaction processes at growing levels of complexity. First, a high-resolution sea surface temperature (SST) field, updated every 6 h, is used to force a WRF model stand-alone atmospheric simulation. Later, a two-way atmosphere–ocean coupled configuration is employed using COAWST, where SST is updated using consistent sea surface fluxes in the atmospheric and ocean models. Results show that a 1D ocean model is able to reproduce the evolution of the cyclone rather well, given a high-resolution initial SST field produced by ROMS after a long spin-up time. Additionally, coupled simulations reproduce more accurate (less intense) sea surface heat fluxes and a cyclone track and intensity, compared with a multi-physics ensemble of standalone atmospheric simulations.

2003 ◽  
Vol 21 (1) ◽  
pp. 267-280 ◽  
Author(s):  
S. Brenner

Abstract. As part of the Mediterranean Forecasting System Pilot Project (MFSPP) we have implemented a high-resolution (2 km horizontal grid, 30 sigma levels) version of the Princeton Ocean Model for the southeastern corner of the Mediterranean Sea. The domain extends 200 km offshore and includes the continental shelf and slope, and part of the open sea. The model is nested in an intermediate resolution (5.5 km grid) model that covers the entire Levantine, Ionian, and Aegean Sea. The nesting is one way so that velocity, temperature, and salinity along the boundaries are interpolated from the relevant intermediate model variables. An integral constraint is applied so that the net mass flux across the open boundaries is identical to the net flux in the intermediate model. The model is integrated for three perpetual years with surface forcing specified from monthly mean climatological wind stress and heat fluxes. The model is stable and spins up within the first year to produce a repeating seasonal cycle throughout the three-year integration period. While there is some internal variability evident in the results, it is clear that, due to the relatively small domain, the results are strongly influenced by the imposed lateral boundary conditions. The results closely follow the simulation of the intermediate model. The main improvement is in the simulation over the narrow shelf region, which is not adequately resolved by the coarser grid model. Comparisons with direct current measurements over the shelf and slope show reasonable agreement despite the limitations of the climatological forcing. The model correctly simulates the direction and the typical speeds of the flow over the shelf and slope, but has difficulty properly re-producing the seasonal cycle in the speed.Key words. Oceanography: general (continental shelf processes; numerical modelling; ocean prediction)


2003 ◽  
Vol 21 (1) ◽  
pp. 221-236 ◽  
Author(s):  
G. Zodiatis ◽  
R. Lardner ◽  
A. Lascaratos ◽  
G. Georgiou ◽  
G. Korres ◽  
...  

Abstract. A high resolution nested flow model for the coastal, shelf and open sea areas of the Cyprus Basin, NE Levantine, eastern Mediterranean Sea is implemented to fulfil the objectives of the Mediterranean Forecasting System Pilot Project, funded by the EU. The Cyprus coastal ocean model is nested entirely within a coarse regional grid model of the eastern Mediterranean Sea, using the MODB climatology for initialisation and the ECMWF perpetual year surface forcing. The nested simulations of the Cyprus model were able to reproduce, with greater detail, flow features similar to those of the coarse grid regional model. The project results show the feasibility of the approach for the development of an operational forecasting system in the Mediterranean Sea, particularly in the Cyprus coastal/shelf sea area. Key words. Oceanography: general (descriptive and regional oceanography; numerical modelling) Oceanography: physical (general circulation)


2017 ◽  
Vol 2017 (1) ◽  
pp. 2017309
Author(s):  
S. F. Zaleski ◽  
G. Watabayashi ◽  
C. Dong ◽  
C. H. Barker ◽  
A. MacFadyen ◽  
...  

The Bureau of Ocean Energy Management (BOEM) and Bureau of Safety and Environmental Enforcement (BSEE) Pacific Region conduct oil spill risk analyses to determine potential impacts to environmental resources. Oil spill trajectory modeling is conducted to predict the movement and fate of spilled oil, if a spill occurred, from existing offshore oil and gas operations in southern California. To improve BOEM and BSEE Pacific Region's ability to conduct oil spill risk analyses for southern California, BOEM partnered with the University of California, Los Angeles (UCLA) to run a multi-year hind cast (re-analysis) of winds, waves, and currents along the coast of California. UCLA created a high-resolution (1 km) ROMS hind cast for the 10 year period 2004–2013 from Morro Bay, California to the border with Mexico. The project was conducted in three phases: (1) Surface winds were calculated at high horizontal and temporal resolution and validated using existing datasets; (2) A wave model was forced by the wind model results and validated through in situ measurements; and (3) The ocean model was run at high resolution and includes temperature, salinity, and currents; it assimilated in situ data and was forced by the hind cast atmospheric model results. BOEM is subsequently partnering with NOAA, to utilize the surface currents and winds from the ROMS hind cast analysis with NOAA's General NOAA Operational Modeling Environment (GNOME) to produce multiple trajectories for NOAA's TAP. Using realistic oil spill scenarios over a range of different regional oceanographic regimes (such as upwelling, relaxation, and eddy-driven flow), TAP will calculate the probabilities of oil contacting parcels of water and shoreline were any oil to spill from southern California oil platforms. This will enable analysts to understand where an oil spill may travel, how long it could take to get there, and the likelihood of spilled oil contacting their resource area. An online TAP viewer with the GNOME-generated data from this study will be publicly available along with the ROMS hind cast data for oil spill response planning along with other oceanographic modeling needs.


2020 ◽  
Vol 10 (8) ◽  
pp. 2883
Author(s):  
Chaewook Lim ◽  
Dong-Hoon Kim ◽  
Seung-Buhm Woo ◽  
Minsu Joh ◽  
Jooneun An ◽  
...  

The characteristics of the 5th Supercomputer Nurion Knights Landing (KNL) system of the Korea Institute of Science and Technology Information (KISTI) were analyzed by developing ultra-high resolution atmospheric and ocean numerical circulation models. These models include the Weather Research and Forecasting System (WRF), Regional Ocean Modeling System (ROMS), and Unstructured Grid Finite Volume Community Ocean Model (FVCOM). Ideal and real-case experiments were simulated for each model according to the number of parallelized cores used for comparing performances. Identical experiments were performed on a general multicore system (Skylake and a general cluster system) for a performance comparison with the Nurion KNL system. Although the KNL system has more than twice as many cores per node as the Skylake system, the KNL system demonstrated 1/3 of the performance rate of the Skylake system. However, the performance rate of the Nurion KNL system was approximately 43% for all experiments. Reducing the number of cores per node in the KNL system by half (36 cores) is the most efficient method when the total number of cores is less than 256 cores, while it is more economical to use all cores when using more than 256 cores. In all experiments, the performance was continuously improved even for a maximum core experiment (1024 cores), thereby indicating that the KNL system can effectively simulate ultra-high resolution numerical circulation models.


2021 ◽  
Vol 13 (15) ◽  
pp. 2995
Author(s):  
Frederick M. Bingham ◽  
Severine Fournier ◽  
Susannah Brodnitz ◽  
Karly Ulfsax ◽  
Hong Zhang

Sea surface salinity (SSS) satellite measurements are validated using in situ observations usually made by surfacing Argo floats. Validation statistics are computed using matched values of SSS from satellites and floats. This study explores how the matchup process is done using a high-resolution numerical ocean model, the MITgcm. One year of model output is sampled as if the Aquarius and Soil Moisture Active Passive (SMAP) satellites flew over it and Argo floats popped up into it. Statistical measures of mismatch between satellite and float are computed, RMS difference (RMSD) and bias. The bias is small, less than 0.002 in absolute value, but negative with float values being greater than satellites. RMSD is computed using an “all salinity difference” method that averages level 2 satellite observations within a given time and space window for comparison with Argo floats. RMSD values range from 0.08 to 0.18 depending on the space–time window and the satellite. This range gives an estimate of the representation error inherent in comparing single point Argo floats to area-average satellite values. The study has implications for future SSS satellite missions and the need to specify how errors are computed to gauge the total accuracy of retrieved SSS values.


2021 ◽  
Vol 561 ◽  
pp. 110057
Author(s):  
Hana Uvanović ◽  
Bernd R. Schöne ◽  
Krešimir Markulin ◽  
Ivica Janeković ◽  
Melita Peharda

2005 ◽  
Vol 66 (2-4) ◽  
pp. 321-340 ◽  
Author(s):  
Vicente Fernández ◽  
David E. Dietrich ◽  
Robert L. Haney ◽  
Joaquín Tintoré

2007 ◽  
Vol 152 (2) ◽  
pp. 351-361 ◽  
Author(s):  
Stefano Goffredo ◽  
Erik Caroselli ◽  
Elettra Pignotti ◽  
Guido Mattioli ◽  
Francesco Zaccanti

Sign in / Sign up

Export Citation Format

Share Document