scholarly journals Making the Transition: EU-China Cooperation on Renewable Energy and Carbon Capture and Storage

2011 ◽  
Author(s):  
Sijbren De Jong ◽  
Jan Wouters
2020 ◽  
Author(s):  
Helene Muri ◽  
Jan Sandstad Næss ◽  
Cristina Maria Iordan

<p>Renewable energy will play a key role in tranformation of the energy sector to reduce CO<sub>2</sub> emissions. Integrated Assessment Modelling scenarios reaching the temperature targets of the Paris Agreement rely on large scale deployment of Bioenergy with Carbon Capture and Storage (BECCS). BECCS are a key contributor to reducing emissions and acheiving net negative emissions in such scenarios. The potentials of large scale BECCS deployment in reaching the 1.5°C target is evaluated using Earth system model simulations in the work presented here. Fully coupled carbon cycle and interactive biogeochemistry is used to assess different rates of BECCS deployment, alongside assuming strong mitigation. BECCS at large scale influence not only the global carbon cycle, but also the feedbacks between the atmosphere and land surface. Changing the land cover to biocrops affects the terrestrial store of carbon, and also the physical properties of the land surface, i.e. biogeophysical forcing, which leads to important feedbacks in the climate system. Renewable energy from BECCS may have implications on several of the SDGs, in particular #13 Climate, #7 Energy, #15 Life on land, as well as #2 Hunger. It is found that it remains a challenge to achieve the 1.5°C target, relying strongly on bioenergy with CCS, and the mitigation potential depends on geografical location, and availability of suitable land areas.</p>


Author(s):  
Amanda Boyd

Carbon capture and storage (CCS) has emerged as a potential strategy for reducing greenhouse gas (GHG) emissions. It involves the capture of carbon dioxide (CO2) emissions from large point source emitters, such as coal-fired power plants. The CO2 is transported to a storage location, where it is isolated from the atmosphere in stable underground reservoirs. CCS technology has been particularly intriguing to countries that utilize fossil fuels for energy production and are seeking ways to reduce their GHG emissions. While there has been an increase in technological development and research in CCS, some members of the public, industry, and policymakers regard the technology as controversial. Some proponents see CCS as a climate change mitigation technology that will be essential to reducing CO2 emissions. Others view CCS as an environmentally risky, complex, and expensive technology that is resource-intensive, promotes the continued extraction of fossil fuels, and competes with renewable energy investments. Effective communication about CCS begins with understanding the perceptions of the general public and individuals living in the communities where CCS projects are sited or proposed. Most people may never live near a CCS site, but may be concerned about risks, such as the cost of development, environmental impacts, and competition with renewable energy sources. Those who live near proposed or operational projects are likely to have a strong impact on the development and deployment of CCS. Individuals in locally affected communities may be more concerned about disruptions to sense of place, impact on jobs or economy, or effect on local health and environment. Effective communication about the risks and benefits of CCS has been recognized as a critical factor in the deployment of this technology.


2019 ◽  
Vol 11 (01) ◽  
pp. 2050003
Author(s):  
TUNÇ DURMAZ ◽  
FRED SCHROYEN

We assess the extent to which Carbon Capture and Storage (CCS) and R&D on this abatement technology are part of a socially efficient solution to the problem of climate change. For this purpose, we extend the intertemporal model of climate and directed technical change developed by Acemoglu et al. (2012) [The environment and directed technical change. American Economic Review, 102(1), 131–166] to include a sector responsible for CCS. We show that two types of solutions exist: a renewable energy regime where current CCS technology is only temporarily used but never further developed; and a fossil energy regime where CCS is part of a long-term solution and is further developed at about the same rate as fossil energy technology. Our computations show that for current estimates of the marginal cost of CCS, the renewable energy regime clearly dominates the fossil fuel energy regime.


2021 ◽  
Vol 9 ◽  
Author(s):  
Guangming Zhang ◽  
Peiran Xie ◽  
Shuhao Huang ◽  
Zhenyu Chen ◽  
Ming Du ◽  
...  

To address climate change and environmental pollution, an increasing number of renewable energy source generations are connected to the grid; meanwhile, the need for carbon capture and pollutant reduction for traditional energy has increased in urgency. In this study, the dispatch problem for an integrated energy system (IES) is expanded considering renewable penetration, carbon capture, and pollutant reduction. First of all, detailed models of carbon and pollutants reductions systems are set up. Specifically, the carbon capture system’s characteristics, which contribute more flexibility for the conventional power plants, are clarified. In addition, the treatment process of pollutants containing SO2 and NOx is elaborated. Moreover, the structure of an evolutionary IES containing pollutants treatment, battery and thermal energy storage, and carbon capture and storage systems are put forward. On this basis, the model of IES for renewable energy penetration and environmental protection considering the constraint of pollutant ultra-low emissions is set up. Finally, the simulation results show that the proposed approach can improve renewable energy penetration and restrain carbon and pollutants emissions.


Author(s):  
Kartika Srivastava

Abstract: Carbon dioxide capture and sequestration (CCS) is the capture and storage of carbon dioxide (CO2) that is emitted to the atmosphere as a result of combustion process. Presently majority of efforts focus on the removal of carbon dioxide directly from industrial plants and thereby storing it in geological reservoirs. The principle is to achieve a carbon neutral budget if not carbon negative, and thereby mitigate global climate change. Currently, fossil fuels are the predominant source of the global energy generation and the trend will continue for the rest of the century. Fossil fuels supply over 63% of all primary energy; the rest is contributed by nuclear, hydro-electricity and renewable energy. Although research and investments are being targeted to increase the percentage of renewable energy and foster conservation and efficiency improvements of fossil-fuel usage, development of CCS technology is the most important tool likely to play a pivotal role in addressing this crisis. [1] Keywords: Carbon Capture and Storage, Carbon dioxide, fossil fuels, Greenhouse gases


Sign in / Sign up

Export Citation Format

Share Document