scholarly journals The Impact of Soil Carbon Sequestration on Adaptation in Europe's Agricultural Sector and the Potential Role of Regulatory Instruments

2017 ◽  
Author(s):  
Jonathan Verschuuren

GCB Bioenergy ◽  
2013 ◽  
Vol 6 (5) ◽  
pp. 566-576 ◽  
Author(s):  
Jesko Zimmermann ◽  
David Styles ◽  
Astley Hastings ◽  
Jens Dauber ◽  
Michael B Jones


2016 ◽  
Vol 144 ◽  
pp. 88-95 ◽  
Author(s):  
Dan Wang ◽  
Jiazhi Fan ◽  
Panpan Jing ◽  
Yong Cheng ◽  
Honghua Ruan


SOIL ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 225-235 ◽  
Author(s):  
Talal Darwish ◽  
Thérèse Atallah ◽  
Ali Fadel

Abstract. The Near East North Africa (NENA) region spans over 14 % of the total surface of the Earth and hosts 10 % of its population. Soils of the NENA region are mostly highly vulnerable to degradation, and future food security will much depend on sustainable agricultural measures. Weather variability, drought and depleting vegetation are dominant causes of the decline in soil organic carbon (SOC). In this work the status of SOC was studied, using a land capability model and soil mapping. The land capability model showed that most NENA countries and territories (17 out of 20) suffer from low productive lands (> 80 %). Stocks of SOC were mapped (1:5 000 000) in topsoils (0–0.30 m) and subsoils (0.30–1 m). The maps showed that 69 % of soil resources are shown to have a stock of SOC below the threshold of 30 tons ha−1. The stocks varied between ≈10 tons ha−1 in shrublands and 60 tons ha−1 for evergreen forests. Highest stocks were found in forests, irrigated crops, mixed orchards and saline flooded vegetation. The stocks of soil inorganic carbon (SIC) were higher than those of SOC. In subsoils, the SIC ranged between 25 and 450 tons ha−1, against 20 to 45 tons ha−1 for SOC. Results highlight the contribution of the NENA region to global SOC stock in the topsoil (4.1 %). The paper also discusses agricultural practices that are favorable to carbon sequestration such as organic amendment, no till or minimum tillage, crop rotation and mulching and the constraints caused by geomorphological and climatic conditions. The effects of crop rotations on SOC are related to the amounts of above and belowground biomass produced and retained in the system. Some knowledge gaps exist, especially in aspects related to the impact of climate change and effect of irrigation on SOC, and on SIC at the level of the soil profile and soil landscape. Still, major constraints facing soil carbon sequestration are policy-relevant and socioeconomic in nature, rather than scientific.



Author(s):  
Mengmeng Ai ◽  
Yingying Sun ◽  
Bo Yan ◽  
Yang Wei


2018 ◽  
Vol 7 (2) ◽  
pp. 301-322 ◽  
Author(s):  
Jonathan Verschuuren

AbstractThis article assesses current and proposed European Union (EU) climate and environmental law, and the legal instruments associated with the Common Agricultural Policy (CAP), to see whether soil carbon sequestration is sufficiently promoted as a promising example of ‘climate-smart agriculture’. The assessment shows that current and proposed policies and instruments are inadequate to stimulate large-scale adoption of soil carbon projects across Europe. Given the identified structural flaws, it is likely that this is true for all climate-smart agricultural practices. An alternative approach needs to be developed. Under EU climate policy, agriculture should be included in the EU Emissions Trading System (ETS) by allowing regulated industries to buy offsets from the agricultural sector, following the examples set by Australia and others. The second element of a new approach is aimed at the CAP, which needs to be far more focused on the specific requirements of climate change mitigation and adaptation. Yet, such stronger focus does not take away the need to explore new income streams for farmers from offsets under the ETS, as the CAP will never have sufficient funds for the deep and full transition of Europe’s agriculture sector that is needed.



2021 ◽  
Author(s):  
Leonor Rodrigues ◽  
Brieuc Hardy ◽  
Bruno Huyghebaert ◽  
Jens Leifeld

<p>To meet the Paris Agreement goal of limiting average global warming to less than 1.5°C above pre-industrial temperatures, European Union (EU) aims to reduce by 40% its domestic greenhouse gas (GHG) emissions by 2030 and in the longer term to become the world’s first climate-neutral economy by 2050 (“Green Deal”). Today, 10% of the European GHG emissions derive directly from agriculture, and measures to decrease or compensate these emissions are required for achieving climatic goals. The role of soils in the global carbon cycle and the importance of reducing GHG emissions from agriculture has been increasingly acknowledged (IPCC, 2018, EEA report 2019). The “4 per 1000” initiative (4p1000) has become a prominent model for mitigating climate change and securing food security through an annual increase in soil organic carbon (SOC) stocks by 0.4 %, or 4‰ per year, in the first 0-40 cm of soil. However, the feasibility of the 4p1000 scenario and more generally the capacity of European countries to implement soil carbon sequestration (SCS) measures are highly uncertain.</p><p>As part of the EJP Soil project, we collected country-specific informationonon on the available knowledge and data of achievable carbon sequestration in mineral agricultural soils (cropland and grassland) across Europe, under various farming systems and pedo-climatic conditions. With this bottom-up approach, we provide a reality check on weather European countries are on track in relation to GHG reductions targets and the “4p1000” initiative. First results showed that the availability of datasets on SCS is heterogeneous across Europe. While northern Europe and central Europe is relatively well studied, references are lacking for parts of Southern, Southeaster and Western Europe. Further, this stocktake highlighted that the current country-based knowledge and engagement is still poor; very few countries have an idea on their national-wide achievable SCS potential. Nevertheless, national SCS potentials that were estimated for 13 countries support the view that SCS can contribute significantly to climate mitigation, covering from 1 to 28, 5 % of the domestic GHG emissions from the agricultural sector, which underpins the importance of further investigations.</p>



2015 ◽  
Vol 7 (19) ◽  
pp. 8190-8196 ◽  
Author(s):  
Wildson V. Cerqueira ◽  
Tatiana F. Rittl ◽  
Etelvino H. Novotny ◽  
Annibal D. Pereira Netto

Characterisation and quantification of the carbonaceous polyaromatic structure of pyrogenic carbon (PyC) are of paramount importance to evaluate the role of PyC in soil carbon sequestration.



Sign in / Sign up

Export Citation Format

Share Document