Modelos geoestaddsticos para la predicciin de fallos de una zona de la red de abastecimiento de agua de Bogott, integrando algoritmos de Machine Learning (Geostatistical Models for the Prediction of Water Supply Network Failures in Bogott, Integrating Machine Learning Algorithms)

2017 ◽  
Author(s):  
Claudia Navarrete-LLpez ◽  
D. S. Calderrn Rivera ◽  
Joss Luis DDaz Arrvalo ◽  
M. Herrera ◽  
Joaquun Izquierdo
Author(s):  
Xudong Fan ◽  
Xijin Zhang ◽  
Xiong ( Bill) Yu

AbstractThe water supply network (WSN) is subjected to leaks that compromise its service to the communities, which, however, is challenging to identify with conventional approaches before the consequences surface. This study developed Machine Learning (ML) models to detect leaks in the WDN. Water pressure data under leaking versus non-leaking conditions were generated with holistic WSN simulation code EPANET considering factors such as the fluctuating user demands, data noise, and the extent of leaks, etc. The results indicate that Artificial Neural Network (ANN), a supervised ML model, can accurately classify leaking versus non-leaking conditions; it, however, requires balanced dataset under both leaking and non-leaking conditions, which is difficult for a real WSN that mostly operate under normal service condition. Autoencoder neural network (AE), an unsupervised ML model, is further developed to detect leak with unbalanced data. The results show AE ML model achieved high accuracy when leaks occur in pipes inside the sensor monitoring area, while the accuracy is compromised otherwise. This observation will provide guidelines to deploy monitoring sensors to cover the desired monitoring area. A novel strategy is proposed based on multiple independent detection attempts to further increase the reliability of leak detection by the AE and is found to significantly reduce the probability of false alarm. The trained AE model and leak detection strategy is further tested on a testbed WSN and achieved promising results. The ML model and leak detection strategy can be readily deployed for in-service WSNs using data obtained with internet-of-things (IoTs) technologies such as smart meters.


2019 ◽  
Vol 49 (2) ◽  
pp. 283-300
Author(s):  
Dawid Szpak ◽  
Izabela Piegdoń

Abstract Water supply network is the most likely element which can fail in the whole water supply system. Failures of the water supply network often results in limitation or lack of water supply to the consumers. Identification and ranking of failure causes in terms of frequency, are the possibility to present proposals of action, related to the replacement or modernization of the water supply network. In addition, the water supply network failures were related to the main parameter important for the water consumers the time of suspended supplying in water.


2021 ◽  
Author(s):  
Xudong Fan ◽  
Xijin Zhang ◽  
Xiong (Bill) Yu

Abstract The water supply network (WSN) is subjected to leaks that compromise its service to the communities, which, however, is challenging to identify with conventional approaches before the consequences surface. This study developed Machine Learning (ML) models to detect leaks in the WDN. Water pressure data under leaking versus non-leaking conditions were generated with holistic WSN simulation code EPANET considering factors such as the fluctuating user demands, data noise, and the extent of leaks, etc. The results indicate that Artificial Neural Network (ANN), a supervised ML model, can accurately classify leaking versus non-leaking conditions; it, however, requires balanced dataset under both leaking and non-leaking conditions, which is difficult for a real WSN that mostly operate under normal service condition. Autoencoder neural network (AE), an unsupervised ML model, is further developed to detect leak with unbalanced data. The results show AE ML model achieved high accuracy when leaks occur in pipes inside the sensor monitoring area, while the accuracy is compromised otherwise. This observation will provide guidelines to deploy monitoring sensors to cover the desired monitoring area. A novel strategy is proposed based on multiple independent detection attempts to further increase the reliability of leak detection by the AE and is found to significantly reduce the probability of false alarm. The trained AE model and leak detection strategy is further tested on a testbed WSN and achieved promising results. The ML model and leak detection strategy can be readily deployed for in-service WSNs using data obtained with internet-of-things (IoTs) technologies such as smart meters.


2016 ◽  
Vol 16 (6) ◽  
pp. 1528-1535 ◽  
Author(s):  
D. Vries ◽  
B. van den Akker ◽  
E. Vonk ◽  
W. de Jong ◽  
J. van Summeren

Methods to improve the operational efficiency of a water supply network by early detection of anomalies are investigated by making use of the data streams from multiple sensor locations within the network. The water supply network is a demonstration site of Vitens, a Dutch water company that has several district metering areas where flow, pressure, electrical conductance and temperature are measured and logged online. Three different machine learning approaches are tested for their feasibility to detect anomalies. In the first approach, day-dependent support vector regression (SVR) models are trained for predicting the measurement signals and compared to straightforward models using mean and median estimates, respectively. Using SVRs or the averaged data as real-time pattern recognizers on all available signals, large leakages can be detected. The second approach utilizes adaptive orthogonal projections and reports an event when the number of hidden variables required to describe the streaming data to a user-defined degree (energy-level threshold) increases. As a third approach, (unsupervised) clustering techniques are applied to detect anomalies and underlying patterns from the raw data streams. Preliminary results indicate that the current dataset is too limited in the amount of events and patterns to harness the potential of these techniques.


2020 ◽  
Vol 39 (5) ◽  
pp. 6579-6590
Author(s):  
Sandy Çağlıyor ◽  
Başar Öztayşi ◽  
Selime Sezgin

The motion picture industry is one of the largest industries worldwide and has significant importance in the global economy. Considering the high stakes and high risks in the industry, forecast models and decision support systems are gaining importance. Several attempts have been made to estimate the theatrical performance of a movie before or at the early stages of its release. Nevertheless, these models are mostly used for predicting domestic performances and the industry still struggles to predict box office performances in overseas markets. In this study, the aim is to design a forecast model using different machine learning algorithms to estimate the theatrical success of US movies in Turkey. From various sources, a dataset of 1559 movies is constructed. Firstly, independent variables are grouped as pre-release, distributor type, and international distribution based on their characteristic. The number of attendances is discretized into three classes. Four popular machine learning algorithms, artificial neural networks, decision tree regression and gradient boosting tree and random forest are employed, and the impact of each group is observed by compared by the performance models. Then the number of target classes is increased into five and eight and results are compared with the previously developed models in the literature.


2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Lin Lin ◽  
Xiufang Liang

The online English teaching system has certain requirements for the intelligent scoring system, and the most difficult stage of intelligent scoring in the English test is to score the English composition through the intelligent model. In order to improve the intelligence of English composition scoring, based on machine learning algorithms, this study combines intelligent image recognition technology to improve machine learning algorithms, and proposes an improved MSER-based character candidate region extraction algorithm and a convolutional neural network-based pseudo-character region filtering algorithm. In addition, in order to verify whether the algorithm model proposed in this paper meets the requirements of the group text, that is, to verify the feasibility of the algorithm, the performance of the model proposed in this study is analyzed through design experiments. Moreover, the basic conditions for composition scoring are input into the model as a constraint model. The research results show that the algorithm proposed in this paper has a certain practical effect, and it can be applied to the English assessment system and the online assessment system of the homework evaluation system algorithm system.


2019 ◽  
Vol 1 (2) ◽  
pp. 78-80
Author(s):  
Eric Holloway

Detecting some patterns is a simple task for humans, but nearly impossible for current machine learning algorithms.  Here, the "checkerboard" pattern is examined, where human prediction nears 100% and machine prediction drops significantly below 50%.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1290-P
Author(s):  
GIUSEPPE D’ANNUNZIO ◽  
ROBERTO BIASSONI ◽  
MARGHERITA SQUILLARIO ◽  
ELISABETTA UGOLOTTI ◽  
ANNALISA BARLA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document