A Regularization Approach for Stable Estimation of Loss Development Factors

2020 ◽  
Author(s):  
Himchan Jeong ◽  
Hyunwoong Chang ◽  
Emiliano A. Valdez
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5196
Author(s):  
Yuki Endo ◽  
Ehsan Javanmardi ◽  
Shunsuke Kamijo

A high-definition (HD) map provides structural information for map-based self-localization, enabling stable estimation in real environments. In urban areas, there are many obstacles, such as buses, that occlude sensor observations, resulting in self-localization errors. However, most of the existing HD map-based self-localization evaluations do not consider sudden significant errors due to obstacles. Instead, they evaluate this in terms of average error over estimated trajectories in an environment with few occlusions. This study evaluated the effects of self-localization estimation on occlusion with synthetically generated obstacles in a real environment. Various patterns of synthetic occlusion enabled the analyses of the effects of self-localization error from various angles. Our experiments showed various characteristics that locations susceptible to obstacles have. For example, we found that occlusion in intersections tends to increase self-localization errors. In addition, we analyzed the geometrical structures of a surrounding environment in high-level error cases and low-level error cases with occlusions. As a result, we suggested the concept that the real environment should have to achieve robust self-localization under occlusion conditions.


2008 ◽  
Vol 130 (8) ◽  
Author(s):  
Fabien Volle ◽  
Michel Gradeck ◽  
Denis Maillet ◽  
Arsène Kouachi ◽  
Michel Lebouché

A method using either a one-dimensional analytical or a two-dimensional numerical inverse technique is developed for measurement of local heat fluxes at the surface of a hot rotating cylinder submitted to the impingement of a subcooled water jet. The direct model calculates the temperature field inside the cylinder that is submitted to a given nonuniform and time dependent heat flux on its outer surface and to a uniform surface heat source on an inner radius. In order to validate the algorithms, simulated temperature measurements inside the cylinder are processed and used by the two inverse techniques to estimate the wall heat flux. As the problem is improperly posed, regularization methods have been introduced into the analytical and numerical inverse algorithms. The numerical results obtained using the analytical technique compare well with the results obtained using the numerical algorithm, showing a good stable estimation of the available test solutions. Furthermore, real experimental data are used for the estimation, and local boiling curves are plotted and discussed.


Author(s):  
N. M. DATSENKO ◽  
◽  
D. M. SONECHKIN ◽  
B. YANG ◽  
J.-J. LIU ◽  
...  

The spectral composition of temporal variations in the Northern Hemisphere mean surface air temperature is estimated and compared in 2000-year paleoclimatic reconstructions. Continuous wavelet transforms of these reconstructions are used for the stable estimation of energy spectra. It is found that low-frequency parts of the spectra (the periods of temperature variations of more than 100 years) based on such high-resolution paleoclimatic indicators as tree rings, corals, etc., are similar to the spectrum of white noise, that is never observed in nature. This seems unrealistic. The famous reconstruction called “Hockey Stick” is among such unrealistic reconstructions. Reconstructions based not only on high-resolution but also on low-resolution indicators seem to be more realistic, since the low-frequency parts of their spectra have the pattern of red noise. They include the “Boomerang” reconstruction showing that some warm periods close to the present-day one were observed in the past.


2019 ◽  
Vol 16 (5) ◽  
pp. 3674-3693
Author(s):  
Aurelie Akossi ◽  
◽  
Gerardo Chowell-Puente ◽  
Alexandra Smirnova ◽  

Sign in / Sign up

Export Citation Format

Share Document