GREENHOUSE GAS INVENTORY: PROMOTING CARBON FOOTPRINT AWARENESS AND POLICY CREATION

2021 ◽  
Author(s):  
Edmark Bualong ◽  
Danilo Vargas





Author(s):  
Ketil Søyland ◽  
Christer Wolden ◽  
Christopher Garmann ◽  
Debbie Harrison

<p>How can large-scale infrastructure projects be sustainable? The purpose of this paper is to discuss how engineering practices were changed in order to reduce the carbon footprint of the E39 Rogfast project, the world’s longest roadway sub-sea tunnel. The project will generate greenhouse gas (GHG)-emissions exceeding 1% of Norway’s total annual GHG-emissions. The paper covers the project process, including some of the challenges to be overcome.</p>



2021 ◽  
Vol 16 (3) ◽  
pp. 7-13
Author(s):  
Radik Safin ◽  
Ayrat Valiev ◽  
Valeriya Kolesar

Global climatic changes have a negative impact on the development of all sectors of the economy, including agriculture. However, the very production of agricultural products is one of the most important sources of greenhouse gases entering the atmosphere. Taking into account the need to reduce the “carbon footprint” in food production, a special place is occupied by the analysis of the volume of greenhouse gas emissions and the development of measures for their sequestration in agriculture. One of the main directions for reducing emissions and immobilizing greenhouse gases is the development of special techniques for their sequestration in the soil, including those used in agriculture. Adaptation of existing farming systems for this task will significantly reduce the “carbon footprint” from agricultural production, including animal husbandry. The development of carbon farming allows not only to reduce greenhouse gas emissions, but also to significantly increase the level of soil fertility, primarily by increasing the content of organic matter in them. As a result, it becomes possible, along with the production of crop production, to produce “carbon units” that are sold on local and international markets. The paper analyzes possible greenhouse gas emissions from agriculture and the potential for their sequestration in agricultural soils. The role of various elements of the farming system in solving the problem of reducing the “carbon footprint” is considered and ways of developing carbon farming in the Republic of Tatarstan are proposed



BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6553-6555
Author(s):  
Rayssa Pinto ◽  
Marcos Lúcio Corazza ◽  
Luiz Pereira Ramos

The pulp and paper sector is undertaking several initiatives to decrease the carbon footprint of its industrial activities. To do so, any emission must be offset by introducing efficient carbon fixation strategies such as reforestation and the development of biobased products and processes. The production of drop-in fuels may play an important role in this scenario. Drop-in fuels provide a good way to add value to otherwise underutilized process streams and wastes, reducing greenhouse gas emissions, minimizing other environmental impacts, and improving process sustainability.



Author(s):  
Sekou Touré ◽  
Gougou Antoine ◽  
Diane Badaye ◽  
Diomande Drissa ◽  
Kouame Ambroise


2020 ◽  
Vol 10 (4) ◽  
pp. 411-425
Author(s):  
Masato Kawanishi ◽  
Junko Morizane ◽  
Nela Anjani Lubis ◽  
Ryo Fujikura


2019 ◽  
Vol 15 ◽  
pp. 01030
Author(s):  
E. Adoir ◽  
S. Penavayre ◽  
T. Petitjean ◽  
L. De Rességuier

Viticulture faces two challenges regarding climate change: adapting and mitigating greenhouse gas emissions. Are these two challenges compatible? This is one of the questions to which Adviclim project (Life project, 2014–2019) provided tools and answers. The assessment of greenhouse gas emissions was implemented at the scale of the plot using a life cycle approach: calculating the carbon footprint. This approach makes it possible to take into account the emissions generated during each stage of the life cycle of a product or a service: in this case, the cultivation of one hectare of vine for one year. Carbon footprint was assessed for the 5 pilot sites of the Adviclim project: Saint-Emilion (France), Coteaux du Layon/Samur (France), Geisenheim (Germany), Cotnari (Romania) and Plompton (United Kingdom). An important work for primary data collection regarding observed practices was carried out with a sample of reresentative farms for these 5 sites, and for one to three vintages depending on the site. Beyond the question asked in the project, the calculation of these carbon footprints made it possible to (i) make winegrowers aware of the life cycle approach and the share of direct emissions generated by viticulture, (ii) acquire new references on the technical itineraries and their associated emissions, (iii) improve the adaptation of the methodology for calculating the carbon footprint to viticulture.



Sign in / Sign up

Export Citation Format

Share Document