CURRENT STATE AND PROSPECTS OF CARBON FARMING DEVELOPMENT IN THE REPUBLIC OF TATARSTAN

2021 ◽  
Vol 16 (3) ◽  
pp. 7-13
Author(s):  
Radik Safin ◽  
Ayrat Valiev ◽  
Valeriya Kolesar

Global climatic changes have a negative impact on the development of all sectors of the economy, including agriculture. However, the very production of agricultural products is one of the most important sources of greenhouse gases entering the atmosphere. Taking into account the need to reduce the “carbon footprint” in food production, a special place is occupied by the analysis of the volume of greenhouse gas emissions and the development of measures for their sequestration in agriculture. One of the main directions for reducing emissions and immobilizing greenhouse gases is the development of special techniques for their sequestration in the soil, including those used in agriculture. Adaptation of existing farming systems for this task will significantly reduce the “carbon footprint” from agricultural production, including animal husbandry. The development of carbon farming allows not only to reduce greenhouse gas emissions, but also to significantly increase the level of soil fertility, primarily by increasing the content of organic matter in them. As a result, it becomes possible, along with the production of crop production, to produce “carbon units” that are sold on local and international markets. The paper analyzes possible greenhouse gas emissions from agriculture and the potential for their sequestration in agricultural soils. The role of various elements of the farming system in solving the problem of reducing the “carbon footprint” is considered and ways of developing carbon farming in the Republic of Tatarstan are proposed

2020 ◽  
Author(s):  
Xiaoyu Feng ◽  
Ermias Kebreab

AbstractThe livestock industry is one of the main contributors to greenhouse gas emissions and there is an increasing demand for the industry to reduce its carbon footprint. Several studies have shown that feed additives 3-nitroxypropanol and nitrate to be effective in reducing enteric methane emissions. The objective of this study was to estimate the net mitigating effect of using 3-nitroxypropanol and nitrate on total greenhouse gas emissions in California dairy industry. A life cycle assessment approach was used to conduct a cradle-to-farm gate environmental impact analysis based on dairy production system in California. Emissions associated with crop production, feed additive production, enteric methane, farm management, and manure storage were calculated and expressed as kg CO2 equivalents (CO2e) per kg of energy corrected milk. The total greenhouse gas emissions from baseline, two 3-nitroxypropanol and three nitrate scenarios were 1.12, 0.993, 0.991, 1.08, 1.07, and 1.09 kg CO2e/kg energy corrected milk. The average net reduction rates for 3-nitroxypropanol and nitrate were 11.7% and 3.95%, respectively. In both cases, using the feed additives on the whole herd slightly improved overall carbon footprint reduction compared to limiting its use during lactation phase. Although both 3-nitroxypropanol and nitrate had effects on decreasing the total greenhouse gas emission, the former was much more effective with no known safety issues in reducing the carbon footprint of dairy production in California.


Author(s):  
Milica Jović ◽  
Mirjana Laković ◽  
Marjan Jovčevski

Daily emissions of greenhouse gasses have a negative impact on the quality of the atmosphere. In almost every sector there is a certain emission of these gasses. This means that every sector, whether it is the energy, industry, transport sector or the household has a part in the degradation of the environment. In this connection, many models have been developed, whose task is to reduce greenhouse gas emissions and carbon dioxide as well to improve the environmental quality. This paper will discuss the carbon footprint model. A carbon footprint is the set of greenhouse gas emissions caused by something. It can be calculated for a product, service, person or even a country, and is used to understand the impact of human activity on the earth’s climate. Also, an analysis of carbon footprint using different types of fuel for heating households will be presented.


2021 ◽  
Vol 16 (5) ◽  
pp. 583-591
Author(s):  
Isrun ◽  
Uswah Hasanah ◽  
Syamsuddin Laude ◽  
Muhammad Basir-Cyio ◽  
Fadhliah ◽  
...  

Greenhouse gases dominated by CO2, CH4, CFC, and N2O come from human (anthropogenic) activities. Efforts to increase the production of rice and corn crops require organic and inorganic fertilizers. The use of chemical fertilizers, which can increase greenhouse gas emissions, is higher than that of organic fertilizers. This study aimed to investigate the reduction in the greenhouse gas emission rate and the increase in crop production caused by organic fertilizer from rice straw and cocoa peel, a community-based sustainable development approach based on education. This research used the mixed method, a descriptive and simple experimental design with the following treatments: t0 = without Compost; ta = straw rice compost dosage of 3 t ha-1; tb = cocoa pod husk dosage of 3 t ha-1; Bta = maize crops + without compost (t0); Btb = maize crops + cocoa pod husk compost (tb); Sta = bare soil + without compost (t0); Stb = rice crops + straw compost (ta); Stc = rice crops + cocoa pod husk compost (tb); and Std = rice crops + without compost (t0). The application of compost reduced agricultural waste and greenhouse gas emissions of CH4 and N2O in both maize and rice fields. Greenhouse gas emissions were reduced by 30 percent compared to those under the application of chemical fertilizers. The utilization of compost as organic fertilizer also increased the production of corn and rice crops compared to that without the application of agricultural waste up to 10.3 tons per ha.


2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


2020 ◽  
pp. 94-110
Author(s):  
N.V. Dvoeglazova ◽  
B.V. Chubarenko ◽  
Y.A. Kozlova

The increase in greenhouse gases in the atmosphere is influenced to a greater extent by a degree of development of industry, a growth of electrification, deforestation, and the burning of fuel for the production of heating and electricity. The contribution of emissions of each of these factors and the ratio of greenhouse gases in them should be taken into account when developing the measures to prevent climate change. According to calculations of emissions from the territory of the Kaliningrad region the burning of fuel and energy resources are supposed to be playing the main role in the greenhouse gas emission from the territory of the Kaliningrad region. In statistical reference books this activity is described as the “activities for the production and distribution of electricity, gas and water.” The usage of this fuel in the energy sector is increasing: from 1742.4 thousand tons of standard fuel in 1991 up to 2193.9 in 2016. Such little increase in total emissions is due to the general technology improvement in the country. Carbon dioxide makes up the bulk of greenhouse gas emissions from the territory of the Kaliningrad region. The percentage of the gases in the total volume is as follows: CO2 - 96.7%, CH4 - 1%, N2 O - 2.3%. Its emissions for the period from 2013 to 2016 varied from 3,757.4 in 2014 to 4,091.7 in 2015 thousand tons of standard fuel, reaching its maximum value in 2015. The estimate presented in this paper is a lower estimate, since it does not take into account emissions from industrial processes, leaks, land use, waste, etc., as well as from some categories of emission sources due to the lack of data on the use of fuel in the Kaliningrad region. Among other things, the calculations of emissions of carbon dioxide, methane and nitrous oxide from the use of fuel by vehicles in 2016, which have shown to be 1.86 times less than from burning of fossil fuels for the same year (2032.87 Gg CO2 eq. and 3914.79 Gg CO2 eq., respectively) and to account for 34.5% of the total emissions, have been made. Moreover, according to the methodology for calculating emissions the factor of carbon dioxide absorption by the region’s forests has been taken into account. The amount of carbon dioxide absorbed by forests has shown to be only 11.9% of the emissions of this gas during the combustion of boiler and furnace fuel.


2021 ◽  
Author(s):  
Pierre Ganault ◽  
Johanne Nahmani ◽  
Yvan Capowiez ◽  
Isabelle Bertrand ◽  
Bruno Buatois ◽  
...  

<p>Accelerating climate change and biodiversity loss calls for agricultural practices that can sustain productivity with lower greenhouse gas emissions while maintaining biodiversity. Biodiversity-friendly agricultural practices have been shown to increase earthworm populations, but according to a recent meta-analyses, earthworms could increase soil CO<sub>2</sub> and N<sub>2</sub>O emissions by 33 and 42%, respectively. However, to date, many studies reported idiosyncratic and inconsistent effects of earthworms on greenhouse gases, indicating that the underlying mechanisms are not fully understood. Here we report the effects of earthworms (anecic, endogeic and their combination) with or without plants on CO<sub>2</sub> and N<sub>2</sub>O emissions in the presence of soil-moisture fluctuations from a mesocosms experiment. The experimental set-up was explicitly designed to account for the engineering effect of earthworms (i.e. burrowing) and investigate the consequences on soil macroporosity, soil water dynamic, and microbial activity. We found that plants reduced N<sub>2</sub>O emissions by 19.80% and that relative to the no earthworm control, the cumulative N<sub>2</sub>O emissions were 17.04, 34.59 and 44.81% lower in the anecic, both species and endogeic species, respectively. CO<sub>2</sub> emissions were not significantly affected by the plants or earthworms but depended on the interaction between earthworms and soil water content, an interaction that was also observed for the N<sub>2</sub>O emissions. Soil porosity variables measured by X-ray tomography suggest that the earthworm effects on CO<sub>2</sub> and N<sub>2</sub>O emissions were mediated by the burrowing patterns affecting the soil aeration and water status. N<sub>2</sub>O emissions decreased with the volume occupied by macropores in the deeper soil layer, whereas CO<sub>2</sub> emissions decreased with the macropore volume in the top soil layer. This study suggests that experimental setups without plants and in containers where the earthworm soil engineering effects via burrowing and casting on soil water status are minimized may be responsible, at least in part, for the reported positive earthworm effects on greenhouse gases.</p>


2021 ◽  
pp. 1-10
Author(s):  
Eelco J. Rohling

This chapter outlines the challenge facing us. The Paris Agreement sets a target maximum of 2°C global warming and a preferred limit of 1.5°C. Yet, the subsequent combined national pledges for emission reduction suffice only for limiting warming to roughly 3°C. And because most nations are falling considerably short of meeting their pledges, even greater warming may become locked in. Something more drastic and wide-ranging is needed: a multi-pronged strategy. These different prongs to the climate-change solution are introduced in this chapter and explored one by one in the following chapters. First is rapid, massive reduction of greenhouse gas emissions. Second is implementation of ways to remove greenhouse gases from the atmosphere. Third may be increasing the reflectivity of Earth to incoming sunlight, to cool certain places down more rapidly. In addition, we need to protect ourselves from climate-change impacts that have already become inevitable.


2019 ◽  
Vol 15 ◽  
pp. 01030
Author(s):  
E. Adoir ◽  
S. Penavayre ◽  
T. Petitjean ◽  
L. De Rességuier

Viticulture faces two challenges regarding climate change: adapting and mitigating greenhouse gas emissions. Are these two challenges compatible? This is one of the questions to which Adviclim project (Life project, 2014–2019) provided tools and answers. The assessment of greenhouse gas emissions was implemented at the scale of the plot using a life cycle approach: calculating the carbon footprint. This approach makes it possible to take into account the emissions generated during each stage of the life cycle of a product or a service: in this case, the cultivation of one hectare of vine for one year. Carbon footprint was assessed for the 5 pilot sites of the Adviclim project: Saint-Emilion (France), Coteaux du Layon/Samur (France), Geisenheim (Germany), Cotnari (Romania) and Plompton (United Kingdom). An important work for primary data collection regarding observed practices was carried out with a sample of reresentative farms for these 5 sites, and for one to three vintages depending on the site. Beyond the question asked in the project, the calculation of these carbon footprints made it possible to (i) make winegrowers aware of the life cycle approach and the share of direct emissions generated by viticulture, (ii) acquire new references on the technical itineraries and their associated emissions, (iii) improve the adaptation of the methodology for calculating the carbon footprint to viticulture.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Diego Rose ◽  
Amelia Willits-Smith ◽  
Martin Heller

Abstract Objectives The climate impacts of human food systems have been well documented. Guidance to individuals to reduce their dietary carbon footprint would benefit from simple advice, but little is known about the impact of simple changes on self-selected diets. Here we examine a random sample of high-impact diets from the U.S. to test the effects of a single change in each diet on greenhouse gas emissions (GHGE) and nutritional quality. Methods Based on an extensive review of lifecycle assessment studies in the environmental sciences literature, we created a database of Food Impacts on the Environment for Linking to Diets (dataFIELD). We matched impact data from dataFIELD to the 24-hour recall dietary data in the 2005–2010 waves of the National Health and Nutrition Examination Survey (NHANES). For all adults with reliable diets (N = 16,800), we calculated their dietary carbon dioxide equivalents per 1000 kcal (kg CO2-eq 1000 kcal−1), a density measure of GHGE. A 10% random sample (N = 330) of all diets in the top quintile of this variable was selected. The single food item with the highest GHGE was identified in each of these high-impact diets and was substituted for an equal-calorie amount of a similar, but lower impact food (e.g., chicken for beef). Each of the 330 diets were then re-evaluated on total GHGE/1000 kcal and on the Healthy Eating Index, a summary measure of nutritional quality developed for the U.S. population. Results The food with the highest impact in each of the randomly chosen diets was most often a type of beef (52%), a mixed dish with beef (33%), or a shellfish/shellfish mixed dish (10%). After single-item substitutions were made for these foods with equivalent poultry-based items, the mean impact from this sample of diets dropped (p < .001) from 4.35 ± 0.1 to 1.95 ± 0.8 kg CO2-eq 1000 kcal−1. This represents a 54% reduction in average dietary greenhouse gas emissions from diets. Healthy Eating Index values for the revised diets showed slight improvements. Conclusions Simple substitutions can be made in individuals' diets to reduce their carbon footprints, without sacrificing dietary quality. If promoted on a wide-scale basis, such a strategy could substantially reduce greenhouse gas emissions from the U.S. diet. Funding Sources Wellcome Trust.


Sign in / Sign up

Export Citation Format

Share Document