Analysis of Friction Stir Welded Al 7075 Alloy Joints for limited energy consumption by Finite Element Method (FEM)

2021 ◽  
Author(s):  
Preethi K. H. ◽  
Dr. N. J. Krishna Prasad ◽  
Dr. Ajay Kumar B. S. ◽  
Dr. Basavaraj Talikoti
2021 ◽  
Vol 37 (5) ◽  
pp. 951-965
Author(s):  
Peng Liu ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Caiyun Lu ◽  
...  

HighlightsThe peak breaking force and energy consumption change in maize stalk were predicted by the FEM.A high SADBT reduced the PBFR and PBFS and increased the ECSC.The TRYDB had the most critical effect on the peak breaking force and energy consumption.Abstract. The mechanized retention of stalks is the primary method to avoid open burning. However, the variation in the breaking force and energy consumption in the chopping process of mechanized retention must be clarified. Therefore, based on the finite element method (FEM) and field validation experiments, the effects of various edge-curve types and rotational speeds of disc blades for maize stalk retention on the breaking force and energy consumption were examined. The test indices were the peak breaking force of the rind (PBFR) and stalk (PBFS), energy consumption of stalk chopping (ECSC), and energy transmission efficiency (ETE). The test factors were the spiral disc blade type (Archimedean, logarithmic, and sinusoidal-exponential spiral), slide-cutting angles of the disc blade tip (SADBT, 30°, 40°, 50°, and 60°), rotational speed of the Y-type blade (RSYB, 1400, 1600, 1800, 2000, 2200, and 2400 rpm), and transmission ratio between Y-type and disc blades (TRYDB, 0.25, 0.50, 0.75, and 1.0). The chopping process was divided into the cutting processes of the initial rind, rind and pith, final rind, and stalk end. The results showed that the SADBT, TRYDB, and RSYB had significant effects on the PBFR, PBFS, ECSC, and ETE. The most influential factor on all test indices was the TRYDB. The RSYB positively affected the PBFR, PBFS, and ECSC. The growth rates of the PBFR, PBFS, and ECSC increased with the TRYDB. The maximum PBFR, PBFS, and ETE values were obtained under an SADBT of 60°, and the maximum ECSC value was obtained under an SADBT of 40°. The difference in energy consumption between the field validation experiment and simulation was less than 10%, which proved the correct results of the FEM simulation. Keywords: Energy consumption, Finite element method, Maize stalk, Peak breaking force, Slide cutting.


2016 ◽  
Vol 52 (4) ◽  
pp. 2103-2116 ◽  
Author(s):  
Ali Mahdian Ahi ◽  
Jalal Yousefi ◽  
Mehdi Ahmadi Najafabadi ◽  
Amir Esmaeilzare ◽  
Amir Refahi Oskouei

2015 ◽  
Vol 766-767 ◽  
pp. 1116-1120
Author(s):  
R. Ramesh ◽  
S. Suresh Kumar ◽  
V. Sivaraman ◽  
R. Mohan

The present work is mainly carried out to study the distribution of temperature in friction stir welded plate of Aluminium alloy. A 3-D finite element simulation model was developed to predict temperature distribution and residual stress in Friction Stir Welding (FSW) of Al 7075 alloy. The effect of angular velocity of tool, axial load and welding speed on the heat generated between the tool and plate to be welded was investigated. The simulations obtained were based on three factor five level central composite rotatable design. Second order polynomial equations for predicting the temperature was developed. Residual stresses for friction stir welded plates due to thermal cycles were predicted. The maximum temperature developed in friction stir welded plated increases with the increase of rotational speed of tool and axial load where as it decreases with increase in welding speed.


Sign in / Sign up

Export Citation Format

Share Document