High Efficiency Biomass-Based Metal-Free Catalyst as a Promising Supercapacitor Electrode for Energy Storage

2021 ◽  
Author(s):  
Murat Akdemir ◽  
Gunel Imanova ◽  
Duygu Elma Karakaş ◽  
Hilal Demir Kıvrak ◽  
Mustafa Kaya
2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


2021 ◽  
Vol 13 (9) ◽  
pp. 4681
Author(s):  
Khashayar Hamedi ◽  
Shahrbanoo Sadeghi ◽  
Saeed Esfandi ◽  
Mahdi Azimian ◽  
Hessam Golmohamadi

Growing concerns about global greenhouse gas emissions have led power systems to utilize clean and highly efficient resources. In the meantime, renewable energy plays a vital role in energy prospects worldwide. However, the random nature of these resources has increased the demand for energy storage systems. On the other hand, due to the higher efficiency of multi-energy systems compared to single-energy systems, the development of such systems, which are based on different types of energy carriers, will be more attractive for the utilities. Thus, this paper represents a multi-objective assessment for the operation of a multi-carrier microgrid (MCMG) in the presence of high-efficiency technologies comprising compressed air energy storage (CAES) and power-to-gas (P2G) systems. The objective of the model is to minimize the operation cost and environmental pollution. CAES has a simple-cycle mode operation besides the charging and discharging modes to provide more flexibility in the system. Furthermore, the demand response program is employed in the model to mitigate the peaks. The proposed system participates in both electricity and gas markets to supply the energy requirements. The weighted sum approach and fuzzy-based decision-making are employed to compromise the optimum solutions for conflicting objective functions. The multi-objective model is examined on a sample system, and the results for different cases are discussed. The results show that coupling CAES and P2G systems mitigate the wind power curtailment and minimize the cost and pollution up to 14.2% and 9.6%, respectively.


2021 ◽  
Vol 414 ◽  
pp. 128760
Author(s):  
Wen-Bo Li ◽  
Di Zhou ◽  
Wen-Feng Liu ◽  
Jin-Zhan Su ◽  
Fayaz Hussain ◽  
...  

2021 ◽  
pp. 2102796
Author(s):  
Shenghui Shen ◽  
Lei Huang ◽  
Xili Tong ◽  
Rongfan Zhou ◽  
Yu Zhong ◽  
...  

Author(s):  
Kaspars Kroics ◽  
Oleksandr Husev ◽  
Kostiantyn Tytelmaier ◽  
Janis Zakis ◽  
Oleksandr Veligorskyi

<p>Battery energy storage systems are becoming more and more popular solution in the household applications, especially, in combination with renewable energy sources. The bidirectional AC-DC power electronic converter have great impact to the overall efficiency, size, mass and reliability of the storage system. This paper reviews the literature that deals with high efficiency converter technologies for connecting low voltage battery energy storage to an AC distribution grid. Due to low voltage of the battery isolated bidirectional AC-DC converter or a dedicated topology of the non isolated converter is required. Review on single stage, two stage power converters and integrated solutions are done in the paper.</p>


2018 ◽  
Author(s):  
Saiid Kassaee ◽  
Adewale Odukomaiya ◽  
Ahmad Abu-Heiba ◽  
Xiaobing Liu ◽  
Matthew M. Mench ◽  
...  

With the increasing penetration of renewable energy, the need for advanced flexible/scalable energy storage technologies with high round-trip efficiency (RTE) and high energy density has become critical. In this paper, a techno-economic model of a novel energy storage technology developed by the Oak Ridge National Laboratory (ORNL) is presented and used to estimate the technology’s capital cost. Ground-Level Integrated Diverse Energy Storage (GLIDES) is an energy storage technology with high efficiency which can store energy via input of electricity and heat and supply dispatchable electricity. GLIDES stores energy by compressing and expanding a gas using a liquid piston. GLIDES performance has been extensively studied analytically and experimentally. This study aims to develop a comprehensive combined performance and cost modeling environment. With the desired system storage capacity kilowattage, storage time (hours), and an initial RTE guess as inputs, the model optimizes the selection of system components to minimize the capital cost. The techno-economic model described in this paper can provide preliminary cost estimates and corresponding performance for various system sizes and storage times.


Sign in / Sign up

Export Citation Format

Share Document