Bacterial Cell Wall Material Properties Determine E. Coli Resistance to Sonolysis

2021 ◽  
Author(s):  
Žiga Pandur ◽  
Matevž Dular ◽  
Rok Kostanjšek ◽  
David Stopar
Author(s):  
Mathias Middelboe ◽  
Niels O.G. Jørgensen

Viral infection of bacteria causes release of dissolved organic matter (DOM), which is available for bacterial uptake. In aquatic environments, this virus-mediated transformation of living cells into dissolved and colloidal organic matter may be a quantitatively important process in the pelagic recycling of carbon and nutrients, but little is known about the amount, composition, or bioavailability of viral lysates. By using a model system of a marine bacterium (Cellulophaga sp.) and a virus specific to this bacterium, the present study provides a first quantification of the input of dissolved free and combined amino acids (DFAA and DCAA) and bacterial cell wall compounds following viral lysis. The DCAA constituted 51–86% of the total virus-mediated organic carbon release of 1087–1825 μg C l−1 (estimated biomass of the lysed bacteria), whereas DFAA and glucosamine each accounted for 2–3% of total lysate-C. The viral particles themselves constituted 4–6% of the released organic carbon, and altogether, the applied analyses thus identified 53–92% of the released lysates. Approximately 12% of the identified compounds were derived from bacterial cell wall peptidoglycan, including various D-isomers of DFAA and DCAA, glucosamine and diaminopimelic acid (DAPA). Although a portion of this cell wall material may have entered the pool of refractory material, a significant fraction of some peptidoglycan-derived components, e.g. 83% of the released D-DFAA, were removed from the dissolved phase during the last part of the incubations, suggesting that part of the cell wall material were utilized by the developing virus-resistant Cellulophaga population. Therefore, we suggest that virus-mediated DOM is a source of a variety of organic compounds, which contribute significantly to the pool of rapidly recycling material in the ocean.


2020 ◽  
Author(s):  
Shannon G. Murphy ◽  
Andrew N. Murtha ◽  
Ziyi Zhao ◽  
Laura Alvarez ◽  
Peter Diebold ◽  
...  

AbstractThe bacterial cell wall is composed primarily of peptidoglycan (PG), a poly-aminosugar that is essential to sustain cell shape, growth and structural integrity. PG is synthesized by two different types of synthase complexes (class A Penicillin-binding Proteins [PBP]s/Lpos and Shape, Elongation, Division, Sporulation [SEDS]/class B PBP pairs) and degraded by ‘autolytic’ enzymes to accommodate growth processes. It is thought that autolsyin activity (and particulary the activity of endopeptidases, EPs) is required for PG synthesis and incorporation by creating gaps that are patched and paved by PG synthases, but the exact relationship between autolysins and the separate synthesis machineries remains incompletely understood. Here, we have probed the consequences of EP depletion for PG synthesis in the diarrheal pathogen Vibrio cholerae. We found that EP depletion resulted in severe morphological defects, increased cell mass, a decline in viability, and continuing (yet aberrant) incorporation of cell wall material. Mass increase and cell wall incorporation proceeded in the presence of Rod system inhibitors, but was abolished upon inhibition of aPBPs. However, the Rod system remained functional (i.e., exhibited sustained directed motion) even after prolonged EP depletion, without effectively promoting cell elongation. Lastly, heterologous expression of an EP from Neisseria gonorrhoeae could fully complement growth and morphology of an EP-insufficient V. cholerae. Overall, our findings suggest that in V. cholerae, the Rod system requires endopeptidase activity (but not necessarily direct interaction with EPs) to promote cell expansion and substantial PG incorporation, whereas aPBPs are able to engage in sacculus construction even during severe EP insufficiency.ImportanceSynthesis and turnover of the bacterial cell wall must be tightly co-ordinated to avoid structural integrity failure and cell death. Details of this coordination are poorly understood, particularly if and how cell wall turnover enzymes are required for the activity of the different cell wall synthesis machines. Our results suggest that in Vibrio cholerae, one class of turnover enzymes, the endopeptidases, are required only for substantial PG incorporation mediated by the Rod system, while the aPBPs maintain structural integrity during endopeptidase insufficiency. Our results suggest that aPBPs are more versatile than the Rod system in their ability to recognize cell wall gaps formed by autolysins other than the major endopeptidases, adding to our understanding of the co-ordination between autolysins and cell wall synthases. A detailed understanding of autolysin biology may promote the development of antibiotics that target these essential turnover processes.


1985 ◽  
Vol 64 (8) ◽  
pp. 1046-1050 ◽  
Author(s):  
J. Warfvinge ◽  
G. Dahlen ◽  
G. Bergenholtz

Lipopolysaccharides (LPS) from Bacteroides oralis and Veillonella parvula and cell wall material from Lactobacillus casei were studied for their capacity to induce leukocyte migration in the dental pulp and in an implanted wound chamber. Three adult monkeys were challenged using lyophilized material sealed into buccal Class V cavities prepared in dentin. Pulp tissue responses were observed histologically eight and 72 hours after initiation of the experiment. Subjacent to cut dentinal tubules, bacterial materials induced polymorphonuclear leukocyte (PMN's) infiltration in the pulp tissue of the majority of test teeth examined. Responses were similar for the three bacterial test materials at both time periods. Topical applications of bovine serum albumin (BSA), used as a control, induced significantly less accumulation of PMN's. Assessments of induced exudate volumes and leukocyte densities in chambers implanted in rats showed comparable rankings with pulpal experiment between test (i.e., bacterial) and control (BSA) materials. Analysis of the data indicates that high-molecular-weight complexes of bacterial cell walls may adversely affect pulpal tissue across freshly exposed dentin.


1998 ◽  
Vol 53 (23) ◽  
pp. 3913-3922 ◽  
Author(s):  
A.E. Smith ◽  
K.E. Moxham ◽  
A.P.J. Middelberg

2021 ◽  
Author(s):  
Adeeba H. Dhalech ◽  
Tara D. Fuller ◽  
Christopher M. Robinson

Enteric viruses infect the mammalian gastrointestinal tract and lead to significant morbidity and mortality worldwide. Data indicate that enteric viruses can utilize intestinal bacteria to promote viral replication and pathogenesis. However, the precise interactions between enteric viruses and bacteria are unknown. Here we examined the interaction between bacteria and Coxsackievirus B3, an enteric virus from the picornavirus family. We found that bacteria enhance the infectivity of Coxsackievirus B3 (CVB3) in vitro . Notably, specific bacteria are required as Gram-negative Salmonella enterica , but not Escherichia coli , enhanced CVB3 infectivity and stability. Investigating the cell wall components of both S. enterica and E. coli revealed that structures in the O-antigen or core of lipopolysaccharide, a major component of the Gram-negative bacterial cell wall, were required for S. enterica to enhance CVB3. To determine if these requirements were necessary for similar enteric viruses, we investigated if S. enterica and E. coli enhanced infectivity of poliovirus, another enteric virus in the picornavirus family. We found that while E. coli did not enhance the infectivity of CVB3, E. coli enhanced poliovirus infectivity. Overall, these data indicate that distinct bacteria enhance CVB3 infectivity and stability, and specific enteric viruses may have differing requirements for their interactions with specific bacterial species. Importance Previous data indicate that several enteric viruses utilize bacteria to promote intestinal infection and viral stability. Here we show that specific bacteria and bacterial cell wall components are required to enhance infectivity and stability of Coxsackievirus B3 in vitro . These requirements are likely enteric virus-specific as the bacteria for CVB3 differs from poliovirus, a closely related virus. Therefore, these data indicate that specific bacteria and their cell wall components dictate the interaction with various enteric viruses in distinct mechanisms.


2002 ◽  
Vol 22 (1-2) ◽  
pp. 209-222 ◽  
Author(s):  
Bénédicte Flambard

Sign in / Sign up

Export Citation Format

Share Document