Investigation of Strength, Water Absorption, Heat Conduction by Partially Replacement of Cement with Sugarcane Bagasse and Rice Husk Ash in the Mortar

2021 ◽  
Author(s):  
Asmat Ullah ◽  
Ziyad Ahmad ◽  
Zeeshan Khan ◽  
Shahzeb Rehman ◽  
Sajjad Wali Khan
Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1524 ◽  
Author(s):  
Jing Liu ◽  
Chunyan Xie ◽  
Chao Fu ◽  
Xiuli Wei ◽  
Dake Wu

When properly processed, rice husk ash (RHA) comprises a large amount of SiO2, which exhibits a high pozzolanic activity and acts as a good building filler. In this paper, the effects of rice husk ash content, acid pretreatment, and production regions on the compressive and flexural properties and water absorption of a cement paste were studied. The experimental results showed that the compressive strength of the rice husk ash was the highest with a 10% content level, which was about 16.22% higher than that of the control sample. The rice husk after acid pretreatment displayed a higher strength than that of the sample without the acid treatment, and the rice husk from the Inner Mongolia region indicated a higher strength than that from the Guangdong province. However, the flexural strength of each group was not significantly different from that of the blank control group. The trend observed for the water absorption was similar to that of the compressive strength. The variation in the RHA proportions had the greatest influence on the properties of the paste specimens, followed by the acid pretreatments of the rice husks. The production regions of the rice husks indicated the least influence.


2014 ◽  
Vol 6 (3) ◽  
pp. 421-430 ◽  
Author(s):  
M.S. Sultana ◽  
M.I. Hossain ◽  
M.A. Rahman ◽  
M.H. Khan

Effects of rice husk ash and fly ash on properties of red clay collected from Naogaon district of Bangladesh were investigated. Different percentages of rice husk ash (RHA) and fly ash (5%, 10% and 15%) were thoroughly mixed with clay to analyse various physical and chemical properties of clay followed by heat treatment of 8000C to 11000C. The samples were tested for compressive strength, linear shrinkage, water absorption, porosity and bulk density. XRD analysis indicates the clay sample was mainly illite type. Water absorption and porosity increased with increasing percentage of ashes. The percentage of water absorption was within 6 to 10% for different mixture which may be suitable for ceramic and tiles purposes. Both fly ash and RHA of 15% could be used to improve some properties of clay. The optimum firing temperature for all the samples was 10500C. XRD pattern of clay with fly ash and rice husk ash heated at 10500C confirms the presence of feldspar and quartz as major phase and hematite (Fe2O3) and cristobalite phase as minor phase. This red clay deposits reinforced with different appropriate quantities of rice husk ash and fly ash could be used for various low temperature applications in industry and construction purposes. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i3.15343 J. Sci. Res. 6 (3), 421-430 (2014)


2017 ◽  
Vol 751 ◽  
pp. 538-543 ◽  
Author(s):  
Pongsak Jittabut

This research was aimed to a present the physical and thermal properties of geopolymer pastes made of fly ash (FA) and bagasse ash (BA) with rice husk ash (RHA) containing at the doses of 0%, 2%, 4%, 6%, 8% and 10% by weight. The sodium hydroxide concentration of 15 molars, sodium silicate per sodium hydroxide by weight ratio of 2.0, the alkaline liquid per binder at the ratio of 0.60 and curing at ambient temperature were used at the to mix all mixtures to gether for 7 and 28 days. The properties analysis of the geopolymer pastes such as compressive strength, bulk density, water absorption, thermal conductivity, thermal diffusivity and thermal capacity were tested. The results were indicated that geopolymer pastes that containing rice husk ash 2% by weight for 28 days of curing gave the maximum compressive strength of 84.42 kg/cm2, low water absorption of 1.16 %, low bulk density of 2,065.71 kg/cm3, lower thermal conductivity of 1.1173 W/m.K, lower thermal diffusion of 6.643 µm2/s and lower thermal capacity of 1.6819 MJ/m3K, respectively. The utilization of waste from agriculture industry via geopolymer pastes for green building materials can be achieved. For this research, physical properties and thermal insulation of geopolymer pastes were siqnificantly improved.


2013 ◽  
Vol 795 ◽  
pp. 14-18 ◽  
Author(s):  
Y.C. Khoo ◽  
I. Johari ◽  
Zainal Arifin Ahmad

The aim of this study is to determine the influence of rice husk ash (RHA) on the engineering properties of fired-clay brick with the present of 10% sand. Temperature 1200°C is selected as the optimum temperature based on the preliminaries study. X-ray Diffraction (XRD) and X-Ray Fluorescence (XRF), were carried out to determine the characteristic of raw materials used. Mechanical properties of rice husk ash-clay bricks are determined in terms of compressive strength, porosity and water absorption. The results shows that increase in RHA replacement percentage reduce the compressive strength and linear shrinkage of fired-clay bricks while the porosity and water absorption value increase. From the investigation, we can conclude that the optimum mixing ratio for fired-clay brick containing RHA is 15% because it complied with the minimum requirement for building material in term of strength and water absorption.


Author(s):  
Nayan Kawaduji Mohankar ◽  
Shrikant Solanke

Industrial waste productions are increased these days, which is causing grief to the environment. Hence it is necessary to cut down the waste generation or reuse the waste. It is needed to utilize the waste to reduce environment damage. It is known that ashes produced from the industries can be used in construction. Ashes like fly ash can successfully replaces the cement showing good results. Researchers are finding the new ways to use ashes in production of cement. Now a days cement manufactures adulterates the cement with pozzolanic material like fly ash, rice husk ash, sugarcane bagasse ash etc. Using these product in concrete, they not only reduces the pollution but also lower the price effectively. If these fillers added in proportion it enhances the properties of concrete like workability, strength, water absorption, permeability etc. considerably. This review paper represents the properties of concrete when cement gets partially replaced by sugarcane bagasse ash, fly ash and rice husk ash. This paper primarily concentrates on the properties like durability and strength when cement concrete contain fillers in it. It also considers the non-destructive tests which are performed.


Sign in / Sign up

Export Citation Format

Share Document