Microstructure Evolution of a Nickel-Based Powder Metallurgy Superalloy Under Different Solution Treatment Temperatures

2021 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Jikang Li ◽  
You Wu ◽  
Qingshuai Feng ◽  
Jiantao Liu ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4223 ◽  
Author(s):  
Xi Zhao ◽  
Shuchang Li ◽  
Fafa Yan ◽  
Zhimin Zhang ◽  
Yaojin Wu

Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion (350 °C) and heat treatment with varying parameters were investigated, respectively. The results showed that dynamic recrystallization of Mg grains was developed and the dendritic eutectic β-Mg17Al12 phases formed during the solidification were broken into small β-phase particles after hot extrusion. Moreover, a weak texture with two dominant peaks formed owing to the significant grain refinement and the enhanced activation of pyramidal <c + a> slip at relative high temperature. The tension tests showed that both the yield strength and ultimate tensile strength of the extruded alloy were dramatically improved owing to the joint strengthening effect of fine grain and β-phase particles as compared with the homogenized sample. The solution treatment achieved the good plasticity of the alloy resulting from the dissolution of β-phases and the development of more equiaxed grains, while the direct-aging process led to poor alloy elongation as a result of residual eutectic β-phases. After solution and aging treatment, simultaneous bonding strength and plasticity of the alloy were achieved, as a consequence of dissolution of coarse eutectic β-phases and heterogeneous precipitation of a large quantity of newly formed β-phases with both the morphologies of continuous and discontinuous precipitates.


2015 ◽  
Vol 60 (3) ◽  
pp. 1755-1762 ◽  
Author(s):  
J. Wozniak ◽  
M. Kostecki ◽  
K. Broniszewski ◽  
W. Bochniak ◽  
A. Olszyna

Abstract This paper discusses the influence of thermal treatment parameters on mechanical properties of AA6061+x% vol. SiCp (x = 0, 2.5, 5, 7.5, 10) composites. The composites were consolidated via powder metallurgy processing using the unconventional method of extrusion (the KoBo method). In order to establish the optimum parameters of the heat treatment two different temperatures of supersaturation (530 and 558ºC) were applied. The aging curves were determined at various aging temperatures such as 140, 160, 180 and 200ºC. The effects of applied parameters were studied using the microstructure observations and hardness measurements. Obtained results show that the solution treatment at 530ºC is sufficient to complete dissolution of the precipitates. Higher temperature of the process resulted in accelerating the aged-hardening. The suitable age treating parameters for the AA6061-5 vol. % SiCp composites were 160 - 180ºC for 12 - 16 hours.


Sign in / Sign up

Export Citation Format

Share Document