scholarly journals An online tool for fetal fraction prediction based on direct size distribution analysis of maternal cell-free DNA

BioTechniques ◽  
2020 ◽  
Author(s):  
Luca Bedon ◽  
Josef Vuch ◽  
Simeone Dal Monego ◽  
Germana Meroni ◽  
Vanna Pecile ◽  
...  

The discovery of circulating fetal DNA in the plasma of pregnant women has greatly promoted advances in noninvasive prenatal testing. Screening performance is enhanced with higher fetal fraction and analysis of samples whose fetal DNA fraction is lower than 4% are unreliable. Although current approaches to fetal fraction measurement are accurate, most of them are expensive and time consuming. Here we present a simple and cost-effective solution that provides a quick and reasonably accurate fetal fraction by directly evaluating the size distribution of circulating DNA fragments in the extracted maternal cell-free DNA. The presented approach could be useful in the presequencing stage of noninvasive prenatal testing to evaluate whether the sample is suitable for the test or a repeat blood draw is recommended.

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Juozas Gordevičius ◽  
Milda Narmontė ◽  
Povilas Gibas ◽  
Kotryna Kvederavičiūtė ◽  
Vita Tomkutė ◽  
...  

Abstract Background Massively parallel sequencing of maternal cell-free DNA (cfDNA) is widely used to test fetal genetic abnormalities in non-invasive prenatal testing (NIPT). However, sequencing-based approaches are still of high cost. Building upon previous knowledge that placenta, the main source of fetal circulating DNA, is hypomethylated in comparison to maternal tissue counterparts of cfDNA, we propose that targeting either unmodified or 5-hydroxymethylated CG sites specifically enriches fetal genetic material and reduces numbers of required analytical sequencing reads thereby decreasing cost of a test. Methods We employed uTOPseq and hmTOP-seq approaches which combine covalent derivatization of unmodified or hydroxymethylated CG sites, respectively, with next generation sequencing, or quantitative real-time PCR. Results We detected increased 5-hydroxymethylcytosine (5hmC) levels in fetal chorionic villi (CV) tissue samples as compared with peripheral blood. Using our previously developed uTOP-seq and hmTOP-seq approaches we obtained whole-genome uCG and 5hmCG maps of 10 CV tissue and 38 cfDNA samples in total. Our results indicated that, in contrast to conventional whole genome sequencing, such epigenomic analysis highly specifically enriches fetal DNA fragments from maternal cfDNA. While both our approaches yielded 100% accuracy in detecting Down syndrome in fetuses, hmTOP-seq maintained such accuracy at ultra-low sequencing depths using only one million reads. We identified 2164 and 1589 placenta-specific differentially modified and 5-hydroxymethylated regions, respectively, in chromosome 21, as well as 3490 and 2002 Down syndrome-specific differentially modified and 5-hydroxymethylated regions, respectively, that can be used as biomarkers for identification of Down syndrome or other epigenetic diseases of a fetus. Conclusions uTOP-seq and hmTOP-seq approaches provide a cost-efficient and sensitive epigenetic analysis of fetal abnormalities in maternal cfDNA. The results demonstrated that T21 fetuses contain a perturbed epigenome and also indicated that fetal cfDNA might originate from fetal tissues other than placental chorionic villi. Robust covalent derivatization followed by targeted analysis of fetal DNA by sequencing or qPCR presents an attractive strategy that could help achieve superior sensitivity and specificity in prenatal diagnostics.


2020 ◽  
Vol 24 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Renee Stokowski ◽  
Karen White ◽  
Coleen Hacker ◽  
Jigna Doshi ◽  
Maximilian Schmid

Author(s):  
Francesca Romana Grati ◽  
Komal Bajaj ◽  
Giuseppe Simoni ◽  
Federico Maggi ◽  
Susan J. Gross ◽  
...  

2020 ◽  
Vol 40 (7) ◽  
pp. 838-845
Author(s):  
Noriyuki Nakamura ◽  
Aiko Sasaki ◽  
Masashi Mikami ◽  
Miyuki Nishiyama ◽  
Rina Akaishi ◽  
...  

2014 ◽  
Vol 186 (12) ◽  
pp. 934-934
Author(s):  
C. M. Armour ◽  
S. M. Nikkel

2016 ◽  
Vol 62 (6) ◽  
pp. 848-855 ◽  
Author(s):  
George Koumbaris ◽  
Elena Kypri ◽  
Kyriakos Tsangaras ◽  
Achilleas Achilleos ◽  
Petros Mina ◽  
...  

Abstract BACKGROUND There is great need for the development of highly accurate cost effective technologies that could facilitate the widespread adoption of noninvasive prenatal testing (NIPT). METHODS We developed an assay based on the targeted analysis of cell-free DNA for the detection of fetal aneuploidies of chromosomes 21, 18, and 13. This method enabled the capture and analysis of selected genomic regions of interest. An advanced fetal fraction estimation and aneuploidy determination algorithm was also developed. This assay allowed for accurate counting and assessment of chromosomal regions of interest. The analytical performance of the assay was evaluated in a blind study of 631 samples derived from pregnancies of at least 10 weeks of gestation that had also undergone invasive testing. RESULTS Our blind study exhibited 100% diagnostic sensitivity and specificity and correctly classified 52/52 (95% CI, 93.2%–100%) cases of trisomy 21, 16/16 (95% CI, 79.4%–100%) cases of trisomy 18, 5/5 (95% CI, 47.8%–100%) cases of trisomy 13, and 538/538 (95% CI, 99.3%–100%) normal cases. The test also correctly identified fetal sex in all cases (95% CI, 99.4%–100%). One sample failed prespecified assay quality control criteria, and 19 samples were nonreportable because of low fetal fraction. CONCLUSIONS The extent to which free fetal DNA testing can be applied as a universal screening tool for trisomy 21, 18, and 13 depends mainly on assay accuracy and cost. Cell-free DNA analysis of targeted genomic regions in maternal plasma enables accurate and cost-effective noninvasive fetal aneuploidy detection, which is critical for widespread adoption of NIPT.


2019 ◽  
Vol 145 (3) ◽  
pp. 319-323 ◽  
Author(s):  
Iris Holzer ◽  
Peter W. Husslein ◽  
Dieter Bettelheim ◽  
Julia Scheidl ◽  
Herbert Kiss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document