blood collection tubes
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 42)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Philipp Helmer ◽  
Sebastian Hottenrott ◽  
Andreas Steinisch ◽  
Daniel Röder ◽  
Jörg Schubert ◽  
...  

Background: Anemia remains one of the most common comorbidities in intensive care patients worldwide. The cause of anemia is often multifactorial and triggered by underlying disease, comorbidities, and iatrogenic factors, such as diagnostic phlebotomies. As anemia is associated with a worse outcome, especially in intensive care patients, unnecessary iatrogenic blood loss must be avoided. Therefore, this scoping review addresses the amount of blood loss during routine phlebotomies in adult (>17 years) intensive care patients and whether there are factors that need to be improved in terms of patient blood management (PBM). Methods: A systematic search of the Medline Database via PubMed was conducted according to PRISMA guidelines. The reported daily blood volume for diagnostics and other relevant information from eligible studies were charted. Results: A total of 2167 studies were identified in our search, of which 38 studies met the inclusion criteria (9 interventional studies and 29 observational studies). The majority of the studies were conducted in the US (37%) and Canada (13%). An increasing interest to reduce iatrogenic blood loss has been observed since 2015. Phlebotomized blood volume per patient per day was up to 377 mL. All interventional trials showed that the use of pediatric-sized blood collection tubes can significantly reduce the daily amount of blood drawn. Conclusion: Iatrogenic blood loss for diagnostic purposes contributes significantly to the development and exacerbation of hospital-acquired anemia. Therefore, a comprehensive PBM in intensive care is urgently needed to reduce avoidable blood loss, including blood-sparing techniques, regular advanced training, and small-volume blood collection tubes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Teoman Deger ◽  
Ruben G. Boers ◽  
Vanja de Weerd ◽  
Lindsay Angus ◽  
Marjolijn M. J. van der Put ◽  
...  

Abstract Background DNA methylation detection in liquid biopsies provides a highly promising and much needed means for real-time monitoring of disease load in advanced cancer patient care. Compared to the often-used somatic mutations, tissue- and cancer-type specific epigenetic marks affect a larger part of the cancer genome and generally have a high penetrance throughout the tumour. Here, we describe the successful application of the recently described MeD-seq assay for genome-wide DNA methylation profiling on cell-free DNA (cfDNA). The compatibility of the MeD-seq assay with different types of blood collection tubes, cfDNA input amounts, cfDNA isolation methods, and vacuum concentration of samples was evaluated using plasma from both metastatic cancer patients and healthy blood donors (HBDs). To investigate the potential value of cfDNA methylation profiling for tumour load monitoring, we profiled paired samples from 8 patients with resectable colorectal liver metastases (CRLM) before and after surgery. Results The MeD-seq assay worked on plasma-derived cfDNA from both EDTA and CellSave blood collection tubes when at least 10 ng of cfDNA was used. From the 3 evaluated cfDNA isolation methods, both the manual QIAamp Circulating Nucleic Acid Kit (Qiagen) and the semi-automated Maxwell® RSC ccfDNA Plasma Kit (Promega) were compatible with MeD-seq analysis, whereas the QiaSymphony DSP Circulating DNA Kit (Qiagen) yielded significantly fewer reads when compared to the QIAamp kit (p < 0.001). Vacuum concentration of samples before MeD-seq analysis was possible with samples in AVE buffer (QIAamp) or water, but yielded inconsistent results for samples in EDTA-containing Maxwell buffer. Principal component analysis showed that pre-surgical samples from CRLM patients were very distinct from HBDs, whereas post-surgical samples were more similar. Several described methylation markers for colorectal cancer monitoring in liquid biopsies showed differential methylation between pre-surgical CRLM samples and HBDs in our data, supporting the validity of our approach. Results for MSC, ITGA4, GRIA4, and EYA4 were validated by quantitative methylation specific PCR. Conclusions The MeD-seq assay provides a promising new method for cfDNA methylation profiling. Potential future applications of the assay include marker discovery specifically for liquid biopsy analysis as well as direct use as a disease load monitoring tool in advanced cancer patients.


2021 ◽  
Author(s):  
Teoman Deger ◽  
Ruben G Boers ◽  
Vanja de Weerd ◽  
Lindsay Angus ◽  
Marjolijn MJ van der Put ◽  
...  

Background: DNA methylation detection in liquid biopsies provides a highly promising and much needed means for real-time monitoring of disease load in advanced cancer patient care. Compared to the often-used somatic mutations, tissue- and cancer-type specific epigenetic marks affect a larger part of the cancer genome and generally have a high penetrance throughout the tumour. Here we describe the successful application of the recently described MeD-seq assay for genome-wide DNA methylation profiling on cell-free DNA (cfDNA). The compatibility of the MeD-seq assay with different types of blood collection tubes, cfDNA input amounts, cfDNA isolation methods, and vacuum-concentration of samples was evaluated using plasma from both metastatic cancer patients and healthy blood donors (HBDs). To investigate the potential value of cfDNA methylation profiling for tumour load monitoring, we profiled paired samples from 8 patients with resectable colorectal liver metastases (CRLM) before and after surgery. Results: The MeD-seq assay worked on plasma-derived cfDNA from both EDTA and CellSave blood collection tubes when at least 10 ng of cfDNA was used. From the 3 evaluated cfDNA isolation methods, both the manual QIAamp Circulating Nucleic Acid Kit (Qiagen) and the semi-automated Maxwell RSC ccfDNA Plasma Kit (Promega) were compatible with MeD-seq analysis, whereas the QIAsymphony DSP Circulating DNA Kit (Qiagen) yielded significantly fewer reads when compared to the QIAamp kit (P<0.001). Vacuum-concentration of samples before MeD-seq analysis was possible with samples in AVE buffer (QIAamp) or water, but yielded inconsistent results for samples in EDTA-containing Maxwell buffer. Principal component analysis showed that pre-surgical samples from CRLM patients were very distinct from HBDs, whereas post-surgical samples were more similar. Several described methylation markers for colorectal cancer monitoring in liquid biopsies showed differential methylation between pre-surgical CRLM samples and HBDs in our data, supporting the validity of our approach. Results for MSC, ITGA4, GRIA4, and EYA4, were validated by quantitative methylation specific PCR. Conclusions: The MeD-seq assay provides a promising new method for cfDNA methylation profiling. Potential future applications of the assay include marker discovery specifically for liquid biopsy analysis as well as direct use as a disease load monitoring tool in advanced cancer patients.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jennie Sotelo-Orozco ◽  
Shin-Yu Chen ◽  
Irva Hertz-Picciotto ◽  
Carolyn M. Slupsky

Blood is a rich biological sample routinely collected in clinical and epidemiological studies. With advancements in high throughput -omics technology, such as metabolomics, epidemiology can now delve more deeply and comprehensively into biological mechanisms involved in the etiology of diseases. However, the impact of the blood collection tube matrix of samples collected needs to be carefully considered to obtain meaningful biological interpretations and understand how the metabolite signatures are affected by different tube types. In the present study, we investigated whether the metabolic profile of blood collected as serum differed from samples collected as ACD plasma, citrate plasma, EDTA plasma, fluoride plasma, or heparin plasma. We identified and quantified 50 metabolites present in all samples utilizing nuclear magnetic resonance (NMR) spectroscopy. The heparin plasma tubes performed the closest to serum, with only three metabolites showing significant differences, followed by EDTA which significantly differed for five metabolites, and fluoride tubes which differed in eleven of the fifty metabolites. Most of these metabolite differences were due to higher levels of amino acids in serum compared to heparin plasma, EDTA plasma, and fluoride plasma. In contrast, metabolite measurements from ACD and citrate plasma differed significantly for approximately half of the metabolites assessed. These metabolite differences in ACD and citrate plasma were largely due to significant interfering peaks from the anticoagulants themselves. Blood is one of the most banked samples and thus mining and comparing samples between studies requires understanding how the metabolite signature is affected by the different media and different tube types.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Marijana Nesic ◽  
Julie S. Bødker ◽  
Simone K. Terp ◽  
Karen Dybkær

DNA released from cells into the peripheral blood is known as cell-free DNA (cfDNA), representing a promising noninvasive source of biomarkers that could be utilized to manage Diffuse Large B-Cell Lymphoma (DLBCL), among other diseases. The procedure for purification and handling of cfDNA is not yet standardized, and various preanalytical variables may affect the yield and analysis of cfDNA, including the purification kits, blood collection tubes, and centrifugation regime. Therefore, we aimed to investigate the impact of these preanalytical variables on the yield of cfDNA by comparing three different purification kits DNeasy Blood & Tissue Kit (Qiagen), QIAamp Circulating Nucleic Acid Kit (Qiagen), and Quick-cfDNA Serum & Plasma Kit (Zymo Research). Two blood collection tubes (BCTs), EDTA-K2 and Cell-Free DNA (Streck), stored at four different time points before plasma was separated and cfDNA purified, were compared, and for EDTA tubes, two centrifugation regimes at 2000 × g and 3000 × g were tested. Additionally, we have tested the utility of long-term archival blood samples from DLBCL patients to detect circulating tumor DNA (ctDNA). We observed a higher cfDNA yield using the QIAamp Circulating Nucleic Acid Kit (Qiagen) purification kit, as well as a higher cfDNA yield when blood samples were collected in EDTA BCTs, with a centrifuge regime at 2000 × g . Moreover, ctDNA detection was feasible from archival plasma samples with a median storage time of nine years.


2021 ◽  
Author(s):  
◽  
Jasper Anckaert ◽  
Francisco Avila Cobos ◽  
Anneleen Decock ◽  
Jill Deleu ◽  
...  

The use of blood-based extracellular RNA (exRNA) as clinical biomarker requires the implementation of a validated procedure for sample collection, processing and profiling. So far, no study has systematically addressed the pre-analytical variables affecting transcriptome analysis of exRNAs. In the exRNAQC study, we evaluated 10 blood collection tubes, 3 time points between blood draw and downstream processing, and 8 RNA purification methods using the supplier-specified minimum and maximum biofluid input volumes. The impact of these pre-analytics is assessed by deep transcriptome profiling of both small and messenger RNA from healthy donors' plasma or serum. Experiments are conducted in triplicate (for a total of 276 transcriptomes) using 189 synthetic spike-in RNAs as processing controls. When comparing blood tubes, so-called blood preservation tubes do not stabilize RNA very well, as is reflected by increasing RNA concentration and number of detected genes over time, and by compromised reproducibility. We also document large differences in RNA purification kit performance in terms of sensitivity, reproducibility, and observed transcriptome complexity. Our results are summarized in 11 performance metrics that enable an informed selection of the most optimal sample processing workflow for your own experiments. In conclusion, we put forward robust quality control metrics for exRNA quantification methods with validated standard operating procedures (SOPs) for processing, representing paramount groundwork for future exRNA-based precision medicine applications.


Author(s):  
Nadia Ayala-Lopez ◽  
Steven E. Conklin data analysis ◽  
Brandon J. Tenney ◽  
Maryann Ness ◽  
Mark A. Marzinke

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249797
Author(s):  
Adam D. Kennedy ◽  
Lisa Ford ◽  
Bryan Wittmann ◽  
Jesse Conner ◽  
Jacob Wulff ◽  
...  

Introduction Analysis of blood for the evaluation of clinically relevant biomarkers requires precise collection and sample handling by phlebotomists and laboratory staff. An important consideration for the clinical application of metabolomics are the different anticoagulants utilized for sample collection. Most studies that have characterized differences in metabolite levels in various blood collection tubes have focused on single analytes. We define analyte levels on a global metabolomics platform following blood sampling using five different, but commonly used, clinical laboratory blood collection tubes (i.e., plasma anticoagulated with either EDTA, lithium heparin or sodium citrate, along with no additive (serum), and EDTA anticoagulated whole blood). Methods Using an untargeted metabolomics platform we analyzed five sample types after all had been collected and stored at -80°C. The biochemical composition was determined and differences between the samples established using matched-pair t-tests. Results We identified 1,117 biochemicals across all samples and detected a mean of 1,036 in the sample groups. Compared to the levels of metabolites in EDTA plasma, the number of biochemicals present at statistically significant different levels (p<0.05) ranged from 452 (serum) to 917 (whole blood). Several metabolites linked to screening assays for rare diseases including acylcarnitines, bilirubin and heme metabolites, nucleosides, and redox balance metabolites varied significantly across the sample collection types. Conclusions Our study highlights the widespread effects and importance of using consistent additives for assessing small molecule levels in clinical metabolomics. The biochemistry that occurs during the blood collection process creates a reproducible signal that can identify specimens collected with different anticoagulants in metabolomic studies. Impact statement In this manuscript, normal/healthy donors had peripheral blood collected using multiple anticoagulants as well as serum during a fasted blood draw. Global metabolomics is a new technology being utilized to draw clinical conclusions and we interrogated the effects of different anticoagulants on the levels of biochemicals from each of the donors. Characterizing the effects of the anticoagulants on biochemical levels will help researchers leverage the information using global metabolomics in order to make conclusions regarding important disease biomarkers.


Sign in / Sign up

Export Citation Format

Share Document