scholarly journals Apoptosis assessment in high-content and high-throughput screening assays

BioTechniques ◽  
2021 ◽  
Vol 70 (6) ◽  
pp. 309-318
Author(s):  
Céline Rens ◽  
Tirosh Shapira ◽  
Sandra Peña-Diaz ◽  
Joseph D Chao ◽  
Tom Pfeifer ◽  
...  

Here the authors describe the development of AUTOptosis, an economical and rapid apoptosis monitoring method suitable for high-content and high-throughput screening assays. AUTOptosis is based on the quantification of nuclei intensity via staining with Hoechst 33342. First, the authors calibrated the method using standard apoptosis inducers in multiple cell lines. Next, the authors validated the applicability of this approach to high-content screening using a small library of compounds and compared it with the terminal deoxynucleotidyl transferase dUTP nick end labeling gold standard. Finally, the authors demonstrated the specificity of the method by using AUTOposis to detect apoptosis triggered by Mycobacterium tuberculosis intracellular infections.

2015 ◽  
Vol 17 (4) ◽  
pp. 239-246 ◽  
Author(s):  
Aileen Y. Alontaga ◽  
Yifei Li ◽  
Chih-Hong Chen ◽  
Chen-Ting Ma ◽  
Siobhan Malany ◽  
...  

Biopolymers ◽  
2014 ◽  
Vol 102 (5) ◽  
pp. 396-406 ◽  
Author(s):  
Franck Madoux ◽  
Claudia Tredup ◽  
Timothy P. Spicer ◽  
Louis Scampavia ◽  
Peter S. Chase ◽  
...  

2011 ◽  
Vol 16 (8) ◽  
pp. 925-931 ◽  
Author(s):  
Amy Emery ◽  
David A. Sorrell ◽  
Stacy Lawrence ◽  
Emma Easthope ◽  
Mark Stockdale ◽  
...  

Aurora A kinase is a key regulator of mitosis, which is upregulated in several human cancers, making it a potential target for anticancer therapeutics. Consequently, robust medium- to high-throughput cell-based assays to measure Aurora A kinase activity are critical for the development of small-molecule inhibitors. Here the authors compare measurement of the phosphorylation of two Aurora A substrates previously used in high-content screening Aurora A assays, Aurora A itself and TACC3, with a novel substrate Lats2. Using antibodies directed against phosphorylated forms of Aurora A (pThr288), P-TACC3 (pSer558), and P-Lats2 (pSer83), the authors investigate their suitability in parallel for development of a cell-based assay using several reference Aurora inhibitors: MLN8054, VX680, and AZD1152-HQPA. They validate a combined assay of target-specific phosphorylation of Lats2 at the centrosome and an increase in mitotic index as a measure of Aurora A activity. The assay is both sensitive and robust and has acceptable assay performance for high-throughput screening or potency estimation from concentration–response assays. It has the advantage that it can be carried out using a commercially available monoclonal antibody against phospho-Lats2 and the widely available Cellomics ArrayScan HCS reader and thus represents a significant addition to the tools available for the identification of Aurora A specific inhibitors.


2016 ◽  
Vol 113 (52) ◽  
pp. 14915-14920 ◽  
Author(s):  
Yih Yang Chen ◽  
Pamuditha N. Silva ◽  
Abdullah Muhammad Syed ◽  
Shrey Sindhwani ◽  
Jonathan V. Rocheleau ◽  
...  

On-chip imaging of intact three-dimensional tissues within microfluidic devices is fundamentally hindered by intratissue optical scattering, which impedes their use as tissue models for high-throughput screening assays. Here, we engineered a microfluidic system that preserves and converts tissues into optically transparent structures in less than 1 d, which is 20× faster than current passive clearing approaches. Accelerated clearing was achieved because the microfluidic system enhanced the exchange of interstitial fluids by 567-fold, which increased the rate of removal of optically scattering lipid molecules from the cross-linked tissue. Our enhanced clearing process allowed us to fluorescently image and map the segregation and compartmentalization of different cells during the formation of tumor spheroids, and to track the degradation of vasculature over time within extracted murine pancreatic islets in static culture, which may have implications on the efficacy of beta-cell transplantation treatments for type 1 diabetes. We further developed an image analysis algorithm that automates the analysis of the vasculature connectivity, volume, and cellular spatial distribution of the intact tissue. Our technique allows whole tissue analysis in microfluidic systems, and has implications in the development of organ-on-a-chip systems, high-throughput drug screening devices, and in regenerative medicine.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 841 ◽  
Author(s):  
Caitlin Lynch ◽  
Jinghua Zhao ◽  
Srilatha Sakamuru ◽  
Li Zhang ◽  
Ruili Huang ◽  
...  

The nuclear receptor, estrogen-related receptor alpha (ERRα; NR3B1), plays a pivotal role in energy homeostasis. Its expression fluctuates with the demands of energy production in various tissues. When paired with the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the PGC/ERR pathway regulates a host of genes that participate in metabolic signaling networks and in mitochondrial oxidative respiration. Unregulated overexpression of ERRα is found in many cancer cells, implicating a role in cancer progression and other metabolism-related diseases. Using high throughput screening assays, we screened the Tox21 10K compound library in stably transfected HEK293 cells containing either the ERRα-reporter or the reporter plus PGC-1α expression plasmid. We identified two groups of antagonists that were potent inhibitors of ERRα activity and/or the PGC/ERR pathway: nine antineoplastic agents and thirteen pesticides. Results were confirmed using gene expression studies. These findings suggest a novel mechanism of action on bioenergetics for five of the nine antineoplastic drugs. Nine of the thirteen pesticides, which have not been investigated previously for ERRα disrupting activity, were classified as such. In conclusion, we demonstrated that high-throughput screening assays can be used to reveal new biological properties of therapeutic and environmental chemicals, broadening our understanding of their modes of action.


Sign in / Sign up

Export Citation Format

Share Document