scholarly journals Scanning Transmission Electron Microscopy for Polymer Blends

2017 ◽  
Vol 4 (1) ◽  
pp. 31-36
Author(s):  
Pradeep Singh ◽  
B. R. Venugopal ◽  
Radha Kamalakaran

Physical properties of the polymer can be altered by mixing one or more polymers together also known as polymer blending. The miscibility of polymers is a key parameter in determining the properties of polymer blend. Conventional transmission electron microscopy (CTEM) plays a critical role in determining the miscibility and morphology of the polymers in blend system. One of the most difficult part in polymer microscopy is the staining by heavy metals to generate contrast in CTEM. RuO4 and OsO4 are commonly used to stain the polymer materials for CTEM imaging. CTEM imaging is difficult to interpret for blends due to lack of clear distinction in contrast. Apart from having difficulty in contrast generation, staining procedures are extremely dangerous as improper handling could severely damage skin, eyes, lungs etc. We have used scanning transmission electron microscopy (STEM) to image polymer blends without any staining processes. In current work, Acrylonitrile Butadiene Styrene (ABS)/Methacrylate Butadiene Styrene (MBS) and Styrene Acrylonitrile (SAN) along with filler additive were dispersed on Polycarbonate (PC) matrix and studied by STEM/HAADF (high angle annular dark field). By using HAADF, contrast was generated through molecular density difference to differentiate components in the blend.

Author(s):  
F. Khoury ◽  
L. H. Bolz

The lateral growth habits and non-planar conformations of polyethylene crystals grown from dilute solutions (<0.1% wt./vol.) are known to vary depending on the crystallization temperature.1-3 With the notable exception of a study by Keith2, most previous studies have been limited to crystals grown at <95°C. The trend in the change of the lateral growth habit of the crystals with increasing crystallization temperature (other factors remaining equal, i.e. polymer mol. wt. and concentration, solvent) is illustrated in Fig.l. The lateral growth faces in the lozenge shaped type of crystal (Fig.la) which is formed at lower temperatures are {110}. Crystals formed at higher temperatures exhibit 'truncated' profiles (Figs. lb,c) and are bound laterally by (110) and (200} growth faces. In addition, the shape of the latter crystals is all the more truncated (Fig.lc), and hence all the more elongated parallel to the b-axis, the higher the crystallization temperature.


2000 ◽  
Vol 638 ◽  
Author(s):  
Alan D.F. Dunbar ◽  
Matthew P. Halsall ◽  
Uschi Bangert ◽  
Alan Harvey ◽  
Philip Dawson ◽  
...  

AbstractWe report optical and scanning transmission electron microscopy studies of germanium dots grown on silicon. In an attempt to control the self-organized growth process and promote dot size uniformity the dot layers were grown on a 4.5nm Si0.6Ge0.4 alloy template layer. Photoluminescence results indicate the formation of carrier confining Ge rich islands, whilst Raman scattering results indicate the presence of an alloy throughout the structures formed. The samples were studied in the UK high resolution scanning transmission electron microscopy facility at Liverpool, UK. Energy dispersive analysis of individual line scans through the sample show that the structures are composed of an alloy throughout with an asymmetric distribution of Germanium in the dots and in the wetting layer close to the dots. We discuss the results in the light of the proposed growth mode for these dots and conclude that attempts to manipulate the composition of these dots during growth may be problematic due to the self-organized nature of their formation.


2010 ◽  
Vol 16 (S2) ◽  
pp. 1116-1117
Author(s):  
PJ Kempen ◽  
AS Thakor ◽  
CL Zavaleta ◽  
SS Gambhir ◽  
R Sinclair

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


2010 ◽  
Vol 16 (S2) ◽  
pp. 80-81 ◽  
Author(s):  
SD Findlay ◽  
N Shibata ◽  
H Sawada ◽  
E Okunishi ◽  
Y Kondo ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


Sign in / Sign up

Export Citation Format

Share Document