scholarly journals Fabrication and Investigation of Mechanical Properties of SiC Particulate Reinforced AA5052 Metal Matrix Composite

2020 ◽  
Vol 7 (1) ◽  
pp. 26-36
Author(s):  
Murlidhar Patel ◽  
Sushanta Kumar Sahu ◽  
Mukesh Kumar Singh

In this present research particulate reinforced aluminium metal matrix composites are developed by using sand mould and liquid stir casting processing route in which AA5052 reinforced with 5 wt. % SiC particulates of 63µm particle size. The density, porosity, micro-hardness, and compressive strength of SiC particulate reinforced AA5052 MMC were investigated and compared these properties with similar properties of unreinforced AA5052. The microstructure of the developed composite was also analysed by using optical microscopy, SEM, and XRD. Developed particulate reinforced Al metal matrix composite gives improved hardness and compressive strength as compared to the unreinforced AA5052. The addition of 5 wt. % SiC particulates increases the density of AA5052.

2021 ◽  
Vol 23 (10) ◽  
pp. 44-60
Author(s):  
M. Thayumanavan ◽  
◽  
K. RVijayaKumar ◽  

Among the various types of manufacturing process methods for discontinuous metal matrix composite, stir casting is the best suitable manufacturing process to fabricate particulate reinforced metal matrix composite. Its benefit is its simplicity, durability, and adaptability. The main issue in this process is proper wetting of reinforcement in aluminium matrix material. Only proper wetting results in a homogeneous dispersion of reinforcement material, and these homogeneous dispersions help to improve the properties of metal matrix composite material. The purpose of this paper was to discuss the outline of the stir casting process, process parameters, and the contribution effect of process parameters. This paper also presents about of the conditions should follow during the addition of reinforcement material and matrix material pouring in mould cavity. This paper also discusses the conditions that must be met during the addition of reinforcement material and matrix material pouring in the mould cavity. This paper also looked into the impact and contribution of stirring casting time, speed, and temperature in aluminium metal matrix composites, as well as processing issues in aluminium metal matrix composites, challenges, and research opportunities.


2021 ◽  
Vol 8 ◽  
Author(s):  
Senthil Kumaran Selvaraj ◽  
Kathiravan Srinivasan ◽  
Utkarsh Chadha ◽  
Rajat Mishra ◽  
Kurane Arpit ◽  
...  

Graphical AbstractA Brief Review of the Ultrasonic welding process flow and sequence for joining aluminium metal matrix composite.


2019 ◽  
Vol 26 (1) ◽  
pp. 423-434
Author(s):  
Mohammed T. Hayajneh ◽  
Mohammed A. Almomani ◽  
Mu’ayyad M. Al-Shrida

AbstractChicken eggshell (Es) waste is an industrial byproduct, and its disposal constitutes a severe environmental risk. Eggshell is a new engineering reinforcement retaining excellent properties such as low density, renewable, eco-friendly, and high thermal stability. The current research aims to study the effects of eggshell particles addition on microstructures, mechanical and tribological properties of aluminium/eggshell green metal matrix composites (MMCs). In the present work Al–Es metal matrix composite is produced by powder metallurgy processes. SEM with EDX and XRD were used to examine the microstructures and the compounds that arise during the sintering process of the produced composites. Six tests were conducted on the produced samples including; dry wear test, micro Vickers hardness, and ultimate compressive strength. The results showed that the addition of 3 wt. % of eggshell improved wear resistance (65%), compressive strength (40%) and hardness (15%). At 6 and 9 wt. % of eggshell, negative results appeared.


2015 ◽  
Vol 787 ◽  
pp. 588-592 ◽  
Author(s):  
Radhakrishnan Ganesh ◽  
J. Saranesh Kumar ◽  
R. Satya Prakash ◽  
K. Chandrasekaran

The paper presents the results of investigation on physical, mechanical and wear properties of SiC particulate reinforced aluminium metal matrix composite. The influence of reinforced ratios of 10, 15 and 20 wt. % of SiCp on mechanical properties and wear characters was examined. The effect of load and sliding velocity on wear behavior of composite was studied. It was observed that increase of weight fraction of reinforcement produced better physical and mechanical properties such as density and hardness with 37 µm SiC reinforced composite inspite of increased density the hardness drops above the critical sintering temperature of 550°C due to crazing of the matrix. With increased size of SiCp especially with higher temperature, density and hardness doesn’t supplement each other. Possible pooling/agglomeration in the case of medium and coarse sized reinforcement account for this. Wear decreases with increase in sintering temperature for 23 and 37 µm SiCp reinforced composites where as it increases for 67 µm SiCp reinforced composites. This could be attributed to formation of silanium compound contributing to discrete hardening of matrix. Wear tends to drop with sliding velocity being less contact between the pin and the disc but increases with normal load acting on the composite.


Author(s):  
Shivanna Shivanna ◽  
Sameer S Kulkarni ◽  
Samarth C ◽  
Sagar R ◽  
Sanil K R

Metal matrix composite (MMC’s) are very much familiar in the field like automobile and aerospace industries owing to their excellent wear and mechanical properties . The fundamental aim of this paper is to augment cognizance amongst the researchers and to attract their consideration towards the present approach to treat with the cryogenic usage for the nonferrous metals. In this writing it is endeavor to deliver the examination findings of character of cryogenic usage on Wear Properties of Al356-ZrSiO4 Particulate Reinforced metal matrix Composites adapted by Stir Casting technique. The amount of reinforcement is changed from 0 to 12wt% in track of 3 %. The ready composites are exposed to wear testing as per ASTM standards using pin on disc machine .The hardness of the composites was found to augment with augment in reinforcement in the composite. The inference obtained discloses that as reinforcement content in the composites increment and execution of cryogenic usage to composite amended the wear resistance.


2016 ◽  
Vol 5 (3) ◽  
Author(s):  
Shashi Prakash Dwivedi ◽  
Satpal Sharma ◽  
Raghvendra Kumar Mishra

AbstractChicken eggshell (ES) is an aviculture by-product that has been listed worldwide as one of the worst environmental problems. The effective utilisation of ES biowaste is strongly encouraged in our society due to environmental and economic reasons. The aluminium alloy (AA) 2014/5 wt% carbonised ES metal matrix composite used in this study was fabricated by electromagnetic stir casting technique at parameters of 12 A (current), 180 s (time) and 700°C (matrix pouring temperature), respectively, and immediately extruded on universal testing machine at 60 MPa using cylindrical H13 tool steel die coated with graphite to avoid upper flow of ES particles and to improve wettability of carbonised ES with AA2014 alloy. Microstructures of composites show uniform distribution of carbonised ES particles. Density and overall cost of the metal matrix composite decreases 3.57% and 5%, respectively, when carbonised ES particulate is added 5% by weight. Tensile strength, hardness, toughness and fatigue strength of AA2014/5 wt% carbonized eggshell composite were also measured. Results show an improvement in these mechanical properties with addition of ES in the matrix alloy.


Sign in / Sign up

Export Citation Format

Share Document