scholarly journals Response Spectrum Analysis of Multi Storied Building on Sloping Ground with Ground, Middle and Top Soft Storey

Author(s):  
Shankar H. Sanni ◽  
Ratnakala S. Bidreddy

In the concrete era of construction activities, there is scarcity of land especially in metro cities. Even though if there is availability of land it may in the sloping ground, hillocks or on land filled areas, in such areas there will be difficulty in the construction and design aspects. To maintain the slope of the strata, different degrees of such buildings step back towards the slanting slope and may likewise also have set back simultaneously. Hence in the present paper, an attempt has been made to study, G+12 storey building assumed to be in flat ground and also on sloping ground with 20 degree inclination. The model considered to be a soft storey with infill walls and two different shear wall arrangements. The building has been modelled in ETABS software with response spectrum method of analysis. The study reveals that model with shear wall improves the performance of the structure in terms of displacement, drift and time period apart from the fact that the structure being constructed in normal ground or sloping ground.

Buildings that rest on sloping ground are different from those that rest on level ground. Buildings located on sloping ground are much more prone to earthquakes because they are, in general, irregular, asymmetrical and tensional. Therefore, the movement of the ground affects them much more. Therefore, there is increased insertion of the shear wall to resist side loading. In this work, the multi-storey building G + 20 is analyzed on slopes of 0o and 24o. For the improvement and analysis of full-filled shear walls, GMT, type L and type C soft soil is used. The structure is analyzed by the response spectrum method and responses such as displacement, ground deviation, period and base slices are evaluated and compared using E-TAB software.


Author(s):  
Akshay Gajbhiye

Abstract : In modern multistorey building construction, irregularities like the soft storey, vertical and plan irregularities, floating columns etc are very common. Building with an open ground storey for parking is a common feature that results in floating columns. Floating columns provide column free space and a good aesthetic architectural view of the building. floating column means the end of any vertical element that rests on the beam which leads to discontinuity of columns such that the path of load distribution in multi-storey buildings is disturbed. The use of a floating column also tends to increase the moment in the column, storey shear etc which highly undesirable in seismically active areas. So, the study of the best location where the floating column needs to be provided to reduce the impact due to seismic loads is of primordial importance. Shear wall is a vertical member which is provided from foundation to top storey. In this study shear wall is used in the direction of orientation so that it provides additional strength and stiffness to the buildings. In the present analysis, 8 models are studied. The first model considers a multi-storeyed building without any shear wall and floating column. Other models analysed are with shear wall and by varying the location of floating columns. The analysis and design are done by STAAD.pro V8i SS6 version software and the method used is response spectrum analysis in earthquake zone 4. The effect of floating column location on parameters such as Base shear, Displacement, Maximum moment, storey shear and percentage of steel reinforcement are discussed. The comparison of results of different models is also carried out in detail using graphs and bar charts in this study. The suitable location for providing a floating column with the shear wall is also discussed. Keywords: Floating column, Shear wall, Seismic load, STAAD.pro.v8i, Response Spectrum Analysis.


2019 ◽  
Vol 180 ◽  
pp. 295-309 ◽  
Author(s):  
Kimleng Khy ◽  
Chatpan Chintanapakdee ◽  
Pennung Warnitchai ◽  
Anil C. Wijeyewickrema

Author(s):  
R. M. Phuke

The present study describes the analysis and design of high-rise steel building frame with and without Steel plate shear wall (SPSW). Further it is compared with moment resisting steel framed building and X-Braced steel framed building. For present work Response Spectrum Analysis is carried out for steel moment resisting frame building having G+19 storey situated in zone III. Modeling is done by using strip modeling. The analysis of steel plate shear wall and the building are carried out using software SAP2000 V15. The main parameter considered in this project is to compare the seismic performance of buildings i.e. lateral deflection. The models are analyzed by Response Spectrum analysis as per IS 1893:2002 and design has been carried out by using IS 800-2007.


In a developing country like India urbanization and industrialization has accelerated real estate development which leds to scarcity of land. This started the construction of multistorey buildings on sloping ground. Buildings constructed on sloping ground are very irregular and unsymmetrical in vertical and horizontal plane as compared to the buildings on level ground. Also, these buildings on sloping ground require great attention for seismic analysis. The present work studies the behavior of flat slab buildings on sloping ground. For this, G+8 storey 36 different building models with square plan area on sloping ground are considered. The total plan area and mass of the building is kept constant for all models. The sloping angles 0°, 16°, 21° are considered for square plan. The corner and core columns of some models are replaced with shear wall by keeping the mass constant. The response spectrum analysis of all models is carried out using software Etabs17. The study concludes that flat slab building with shear wall at outer periphery of building is preferable than the discontinuous shear wall at core of the building.


Author(s):  
Varun Mahajan

Abstract: Architects nowadays develop attractive edifices, and floating columns are widely employed in this process. Floating columns are used not only to provide a magnificent perspective but also when a vast open area is necessary. Edifices with irregular configurations are more vulnerable to earthquakes and hence, suitable shear wall placement is required to ensure the edifice's stability. Many multi-storey edifices collapsed in seconds after the Bhuj Earthquake (Jan 26, 2001), due to the presence of soft stories, floating columns, and mass anomalies. As a result, knowing the seismic reactions of these buildings are vital for constructing earthquake-resistant assemblies. The relevance of a Floating Column and the existence of a shear wall in an irregular multistorey building is highlighted in this study. Dynamic seismic behaviour of a G+18 irregular edifice with different locations of the floating column and different positions of the shear wall is explored in this research. The edifice is analysed and compared with the model without shear walls and floating columns to examine the alterations. The dynamic analysis is carried out using Response Spectrum Analysis and storey drift, storey displacement and base shear are calculated and finally, software compression is computed for different zones. The analysis is carried out by Indian standardized codes IS 1893:2016 and IS 456:2000 which are the codes specified by the Bureau of Indian Standards for earthquake resistance edifice design and plain and reinforcement concrete design respectively. Keywords: Floating Column, Shear Wall, Irregular Edifice, Seismic behaviour, Response Spectrum Analysis, storey drift, storey displacement, base shear.


Author(s):  
Md. Shahid Iqbal

Abstract: Structural design and analysis produces the capability of resisting all the applied loads without failure during its intended life. Lateral loads mainly due to earthquake govern the design of high-rise buildings. The interior structural system or exterior structural system provides the resistance to lateral loads in the structure. The present paper describes the analysis and design of high-rise buildings with Steel Plate Shear Wall (SPSW) for (G+20) stories. The properties of Steel plate shear wall system include the stiffness for control of structural displacement, ductile failure mechanism and high-energy absorption. The design and analysis of the composite building with steel plate shear wall is carried out using software ETABS. The present study is to carry out the response spectrum analysis of a high-rise composite building by optimizing the thickness of steel plate shear wall and to compare the results of displacement, story drift, overturning moment and story shear. The models are analyzed by Response Spectrum analysis as per IS 1893:2002. All structural members are designed as per IS 456:2002 & IS 800:2007 considering all load combinations. Keywords: Seismic; Composite; Shear Wall; Earthquake; Reinforced concrete.


2021 ◽  
Vol 889 (1) ◽  
pp. 012055
Author(s):  
Krishna Prasad Chaudhary ◽  
Ankit Mahajan

Abstract In this research work several high rise buildings were analyzed using CSI ETABS under the influence of the response spectrum analysis over it. Several different shaped high rise buildings such as H shaped, O shaped and C shaped buildings were taken into consideration for carrying out the research work. All three shaped buildings were of different storey that is of 12 storey and of 16 storey. For proper seismic analysis of all the above discussed buildings, response spectrum method of seismic analysis were taken into consideration. The results of all the buildings for response spectrum analysis were quite different from one another and it was found that the H-shaped building showed better results as compared to the other shaped buildings. It was also seen that the 12 storey building results were quite impressive as compared to the results of the 16 storey building. With the transference of heavy mass, very little effect was seen in latera sway i.e. variation in maximum displacement was negligible. Again, for 16 storey building, maximum displacement was found in the case L-Shaped 16 storey building with the value of 87.804 mm. Again, the transference of heavy masses had a minimal effect on total quantity and cost of the 16 Storey building. In the gist, it was concluded that, bending moments and shear forces were increased from 1.17% to 1.84%. Maximum variation in B.M and S.F. can be seen in O-shaped Building. L-shaped Building produces maximum displacement from all the three irregular shapes i.e. H-shape, L-shaped and O-shaped.


Sign in / Sign up

Export Citation Format

Share Document