scholarly journals Efficiency Improvement by Using Solar Tracking System and Thermoelectric Generator

Author(s):  
Priyanka Jagtap ◽  
Shradha Kakade ◽  
Pooja Pawar ◽  
Swapnali Patil ◽  
Swapnil Pawar ◽  
...  

In this paper maximum power point tracker battery charger is proposed for extracting maximum power from a photovoltaic panel to charge the battery. The output power of the PV system continuously varies with change in irradiance and temperature. It is a very important to improve the efficiency of solar panel. There are number of maximum power point tracking (MPPT) methods available to operate the PV system at maximum power point. The proposed system has used perturb & observe (P&O) MPPT algorithm for the design and implementation. And also describes thermoelectric power generation from waste heat from PV panel, utilizing generators that can convert heat energy directly to electrical energy.

Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 321 ◽  
Author(s):  
Dmitry Baimel ◽  
Saad Tapuchi ◽  
Yoash Levron ◽  
Juri Belikov

This paper proposes two new Maximum Power Point Tracking (MPPT) methods which improve the conventional Fractional Open Circuit Voltage (FOCV) method. The main novelty is a switched semi-pilot cell that is used for measuring the open-circuit voltage. In the first method this voltage is measured on the semi-pilot cell located at the edge of PV panel. During the measurement the semi-pilot cell is disconnected from the panel by a pair of transistors, and bypassed by a diode. In the second Semi-Pilot Panel method the open circuit voltage is measured on a pilot panel in a large PV system. The proposed methods are validated using simulations and experiments. It is shown that both methods can accurately estimate the maximum power point voltage, and hence improve the system efficiency.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 457
Author(s):  
M. I. Iman ◽  
M. F. Roslan ◽  
Pin Jern Ker ◽  
M. A. Hannan

This work comprehensively demonstrates the performance analysis of Fuzzy Logic Controller (FLC) with Particle Swarm Optimization (PSO) Maximum Power Point Tracker (MPPT) algorithm on a stand-alone Photovoltaic (PV) applications systems. A PV panel, DC-DC Boost converter and resistive load was utilized as PV system. Three different MPPT algorithms were implemented in the converter. The result obtained from the converter was analyzed and compared to find the best algorithm to be used to identify the point in which maximum power can be achieve in a PV system. The objective is to reduce the time taken for the tracking of maximum power point of PV application system and minimize output power oscillation. The simulation was done by using MATLAB/Simulink with DC-DC Boost converter. The result shows that FLC method with PSO has achieved the fastest response time to track MPP and provide minimum oscillation compared to conventional P&O and FLC techniques.


Author(s):  
Vahid Jafari Fesharaki ◽  
Farid Sheikholeslam ◽  
Mohammad Reza Jahed Motlagh

AbstractBecause of nonlinear I-V curves of photovoltaic panels, a maximum power point tracking (MPPT) technique is necessary to absorb maximum power. In this article state-space averaging method is utilized to express behavior of boost chopper converter. To generate the best operating point (PV panel desired voltage), incremental conductance is used. A Robust feedback linearization controller is proposed to deliver the PV panel to maximum power point. The controller is robust to environment variations, load uncertainties and load voltage disturbances. Stability of proposed controller is proved based on Lyapunov theorem. A boost chopper is used between PV panel and load to realize proposed MPPT technique. Boost chopper parameters are designed properly to operate converter in continues conduction mode (CCM). To evaluate MPPT technique some simulations in irradiance variation, temperature variation, load variation and load voltage disturbance are presented and discussed.


2013 ◽  
Vol 47 (4) ◽  
pp. 427-432 ◽  
Author(s):  
Hafiz Ullah

Positioning a photovoltaic (PV) panel in the plane of maximum irradiation can increase the power output up to 57%. An automatic microcontroller based system for maximum power point tracking (MPPT) was designed and analyzed. The system was based on positioning the PV panel perpendicular to the solar irradiation. Photosensors were used to measure the difference of solar radiation intensity among three planes. The tracking system used an 8051 microcontroller to control a stepper motor which rotated the panel towards the plane with highest radiation intensity. The MPPT system was found to be 25.9% more effective in capturing solar power than a fixed panel with the same rating. This system would be useful to increase the power output of currently operating solar panels with minor modifications in mounting. Bangladesh J. Sci. Ind. Res. 47(4), 427-432, 2012 DOI: http://dx.doi.org/10.3329/bjsir.v47i4.4689


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Y. Chaibi ◽  
M. Salhi ◽  
A. El-jouni

This paper presents a single-phase standalone photovoltaic (PV) system with two stages of converters. The aim of this work is to track the maximum power point (MPP) so as to transfer the maximum available power to the load and to control the output current in order to feed the AC load by a sinusoidal current. These goals are attained by using the sliding mode to design control laws in order to command the boost DC-DC and the inverter switches. Thus, a maximum power point tracking (MPPT) and an output current controller based on the sliding mode are proposed. The innovative aspect of this work is to propose a standalone PV system with the controllers based only on the sliding mode control approach. The proposed system is modeled and simulated under MATLAB Simulink under fast variations of irradiance and temperature. Then, the obtained results using the suggested MPPT are compared to those using the incremental conductance (IC) method. These results demonstrate the superiority of the sliding mode MPPT in terms of the tracking speed, the efficiency, and the time of response. Moreover, the current controller provides an output current of high quality with a THD of 3.47%. Furthermore, for accurate results, these controllers are evaluated under the fluctuations of two daily climatic profiles (sunny and cloudy) and compared those of the IC method. The results illustrate that the sliding mode MPPT has the potential of generating more electrical energy than the IC MPPT with benefits of up to 13.02% for the sunny daily profile and 27.57% for the cloudy one.


Author(s):  
Imad A. Elzein ◽  
Yuri N. Petrenko

In this article an extended literature surveying review is conducted on a set of comparative studies of maximum power point tracking (MPPT) techniques.  Different MPPT methods are conducted with an ultimate aim of how to be maximizing the PV system output power by tracking Pmax in a set of different operational circumstances. In this paper maximum power point tracking, MPPT techniques are reviewed on basis of different parameters related to the design simplicity and or complexity, implementation, hardware required, and other related aspects.


Author(s):  
Lahcen El Mentaly ◽  
Abdellah Amghar ◽  
Hassan Sahsah

Background: The solar field on our planet is inexhaustible, which favors the use of photovoltaic electricity which generates no nuisance: no greenhouse gases, no waste. Methods: It is a high value-added energy that is produced directly at the place of consumption through photovoltaic (PV) solar panels. Notwithstanding these advantages, the maximum power depends strongly on solar irradiation and temperature, which means that a Maximum Power Point Tracking (MPPT) controller must be inserted between the PV panel and the load in order to follow the Maximum Power Point (MPP) continuously and in real time. In this work, MPP’s behavior was simulated at different temperatures and solar irradiations using seven techniques which identify the MPP by different methods. Results: The novelty of this work is that the seven MPPT methods were compared according to a very selective criterion which is the MPPT efficiency as well as a purely digital duty cycle control without using the PI controller. The simulation under the PSIM software shows that the FLC, TP, FSCC, TG, HC and IC methods have almost the same efficiency of 99%, whereas the FOCV method had a low efficiency of 96%. Conclusion: This makes it possible to conclude that the best methods are FLC, HC and IC because they use fewer sensors compared to the rest.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1464
Author(s):  
Marcin Walczak ◽  
Leszek Bychto

DC/DC converters are widely used in photovoltaic (PV) systems to maximize the power drained from solar panels. As the power generated by a PV panel depends on the temperature and irradiance level, a converter needs to constantly modify its input resistance to remain at the maximum power point (MPP). The input resistance of a converter can be described by a simple equation that includes the converter load resistance and the duty cycle of the switching signal. The equation is sufficient for an ideal converter but can lead to incorrect results for a real converter, which naturally features some parasitic resistances. The goal of this study is to evaluate how the parasitic resistances of a converter influence its input resistance and if they are relevant in terms of MPPT system operation.


2021 ◽  
Vol 13 (5) ◽  
pp. 2656
Author(s):  
Ahmed G. Abo-Khalil ◽  
Walied Alharbi ◽  
Abdel-Rahman Al-Qawasmi ◽  
Mohammad Alobaid ◽  
Ibrahim M. Alarifi

This work presents an alternative to the conventional photovoltaic maximum power point tracking (MPPT) methods, by using an opposition-based learning firefly algorithm (OFA) that improves the performance of the Photovoltaic (PV) system both in the uniform irradiance changes and in partial shading conditions. The firefly algorithm is based on fireflies’ search for food, according to which individuals emit progressively more intense glows as they approach the objective, attracting the other fireflies. Therefore, the simulation of this behavior can be conducted by solving the objective function that is directly proportional to the distance from the desired result. To implement this algorithm in case of partial shading conditions, it was necessary to adjust the Firefly Algorithm (FA) parameters to fit the MPPT application. These parameters have been extensively tested, converging satisfactorily and guaranteeing to extract the global maximum power point (GMPP) in the cases of normal and partial shading conditions analyzed. The precise adjustment of the coefficients was made possible by visualizing the movement of the particles during the convergence process, while opposition-based learning (OBL) was used with FA to accelerate the convergence process by allowing the particle to move in the opposite direction. The proposed algorithm was simulated in the closest possible way to authentic operating conditions, and variable irradiance and partial shading conditions were implemented experimentally for a 60 [W] PV system. A two-stage PV grid-connected system was designed and deployed to validate the proposed algorithm. In addition, a comparison between the performance of the Perturbation and Observation (P&O) method and the proposed method was carried out to prove the effectiveness of this method over the conventional methods in tracking the GMPP.


Sign in / Sign up

Export Citation Format

Share Document