scholarly journals Bose polaron in a quantum fluid of light

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Amit Vashisht ◽  
Maxime Richard ◽  
Anna Minguzzi

We study the Bose polaron problem in a nonequilibrium setting, by considering an impurity embedded in a quantum fluid of light realized by exciton-polaritons in a microcavity, subject to a coherent drive and dissipation on account of pump and cavity losses. We obtain the polaron effective mass, the drag force acting on the impurity, and determine polaron trajectories at a semiclassical level. We find different dynamical regimes, originating from the unique features of the excitation spectrum of driven-dissipative polariton fluids, in particular a non-trivial regime of acceleration against the flow. Our work promotes the study of impurity dynamics as an alternative testbed for probing superfluidity in quantum fluids of light.

2015 ◽  
Vol 29 (22) ◽  
pp. 1550157 ◽  
Author(s):  
Svitlana Zaster ◽  
Eric R. Bittner

We present a reaction/diffusion model for the formation of a lower polariton condensate in a microcavity containing an organic semiconducting molecular crystalline film. Our model–based upon an anthracene film sandwiched between two reflecting dielectric mirrors–consists of three coupled fields corresponding to a gas of excitons created by an external driving pulse, a reservoir of dark states formed by the nonemissive decay of excitons in to nearby electronic states, and a lower polariton condensate. We show that at finite temperature, the presence of the dark reservoir can augment the exciton population such that a lower critical pumping threshold is required to achieve the critical exciton densities required to sustain a stable condensate population. Using linear-stability analysis, we show that a variety of dynamical regimes can emerge depending upon the characteristics of the cavity and the lattice temperature.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dario Ballarini ◽  
Davide Caputo ◽  
Galbadrakh Dagvadorj ◽  
Richard Juggins ◽  
Milena De Giorgi ◽  
...  

AbstractQuantum fluids of light are realized in semiconductor microcavities using exciton-polaritons, solid-state quasi-particles with a light mass and sizeable interactions. Here, we use the microscopic analogue of oceanographic techniques to measure the excitation spectrum of a thermalised polariton condensate. Increasing the fluid density, we demonstrate the transition from a free-particle parabolic dispersion to a linear, sound-like Goldstone mode characteristic of superfluids at equilibrium. Notably, we reveal the effect of an asymmetric pumping by showing that collective excitations are created with a definite direction with respect to the condensate. Furthermore, we measure the critical sound speed for polariton superfluids close to equilibrium.


2000 ◽  
Vol 84 (17) ◽  
pp. 3942-3945 ◽  
Author(s):  
Masaru Onoda ◽  
Takahiro Mizusaki ◽  
Takaharu Otsuka ◽  
Hideo Aoki

2021 ◽  
Author(s):  
Sohan Sengupta

Abstract Quantum Fluids follow Quantum Dynamical Equation(s), which were not known till date. There exist a set of two equations, that is semiclassical approach to Quantum Fluids called Madelung’s Equations. But a new fully quantum variant of Madelung’s Equations when embedded in the Schrodinger Equation is gives full description of evolution of Quantum fluid with respect to time and position. The equation presented in this article has two unknown variables, one is density and other is velocity field as a function of spatial and time coordinates. The equation presented in this article, is derived from Schrodinger Equation, obeying Continuity equation, and Navier Strokes Equation. Bohm’s potential were externally added in Madeline’s equation. But the new equation which is fully quantum mechanical in nature; Bohm’s potential appears out of the equation, which is interesting to observe. Astrophysical cold stellar dynamics and condensed fluids have the main application of this equation. Quantum fluids show strange behaviour when compared to normal fluids. It is also shown that quantum fluid also have spins which has no classical analog.


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

In this chapter, we deal with polaritons as a “quantum fluid of light”, described by variants of the Gross–Pitaevskii equation. We discuss how interactions between flowing polaritons and a defect allow to study their superfluid regime and generate topological defects. Including spin gives rise to an effective magnetic field (polariton spin-orbit coupling) that acts on the topological defects—half-solitons and half-vortices—behaving as effective magnetic monopoles. We describe various techniques to create periodic potentials, that can lead to the formation of polaritonic bands and gaps with a unique flexibility. Special focus is given to topologically nontrivial bands, leading to a polariton topological insulator, based on a polariton graphene analog.


Sign in / Sign up

Export Citation Format

Share Document