scholarly journals The eikonal model of reactions involving exotic nuclei; Roy Glauber's legacy in today's nuclear physics

Author(s):  
Pierre Capel

In this contribution, the eikonal approximation developed by Roy Glauber to describe high-energy quantum collisions is presented. This approximation has been—and still is—extensively used to analyse reaction measurements performed to study the structure of nuclei far from stability. This presentation focuses more particularly on the application of the eikonal approximation to the study of halo nuclei in modern nuclear physics. To emphasise Roy Glauber’s legacy in today’s nuclear physics, recent extensions of this model are reviewed.

1960 ◽  
Vol 11 (11) ◽  
pp. 310-310
Author(s):  
F Mandl
Keyword(s):  

2001 ◽  
Vol 10 (06) ◽  
pp. 405-457 ◽  
Author(s):  
MISAK M. SARGSIAN

We review the present status of the theory of high energy reactions with semi-exclusive nucleon electro-production from nuclear targets. We demonstrate how the increase of transferred energies in these reactions opens a completely new window for study of the microscopic nuclear structure at small distances. The simplifications in theoretical descriptions associated with the increase in the energies are discussed. The theoretical framework for calculation of high energy nuclear reactions based on the effective Feynman diagram rules is described in detail. The result of this approach is the generalized eikonal approximation (GEA), which is reduced to the Glauber approximation when nucleon recoil is neglected. The method of GEA is demonstrated in the calculation of high energy electro-disintegration of the deuteron and A=3 targets. Subsequently, we generalize the obtained formulae for A>3 nuclei. The relation of GEA to the Glauber theory is analyzed. Then, based on the GEA framework we discuss some of the phenomena which can be studied in exclusive reactions: nuclear transparency and short-range correlations in nuclei. We illustrate how light-cone dynamics of high-energy scattering emerge naturally in high energy electro-nuclear reactions.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-5
Author(s):  
Editorial team

Eurasian Journal of Physics and Functional Materials is an international journal published 4 numbers per year starting from October 2017. The aim of the journal is rapid publication of original articles and rewiews in the following areas: nuclear physics, high energy physics, radiation ecology, alternative energy (nuclear and hydrogen, photovoltaic, new energy sources, energy efficiency and energy saving, the energy sector impact on the environment), functional materials and related problems of high technologies.


2021 ◽  
Author(s):  
◽  
Lukas Weih

High-energy astrophysics plays an increasingly important role in the understanding of our universe. On one hand, this is due to ground-breaking observations, like the gravitational-wave detections of the LIGO and Virgo network or the black-hole shadow observations of the EHT collaboration. On the other hand, the field of numerical relativity has reached a level of sophistication that allows for realistic simulations that include all four fundamental forces of nature. A prime example of how observations and theory complement each other can be seen in the studies following GW170817, the first detection of gravitational waves from a binary neutron-star merger. The same detection is also the chronological starting point of this Thesis. The plethora of information and constraints on nuclear physics derived from GW170817 in conjunction with theoretical computations will be presented in the first part of this Thesis. The second part goes beyond this detection and prepares for future observations when also the high-frequency postmerger signal will become detectable. Specifically, signatures of a quark-hadron phase transition are discussed and the specific case of a delayed phase transition is analyzed in detail. Finally, the third part of this Thesis focuses on the inclusion of radiative transport in numerical astrophysics. In the context of binary neutron-star mergers, radiation in the form of neutrinos is crucial for realistic long-term simulations. Two methods are introduced for treating radiation: the approximate state-of-the-art two-moment method (M1) and the recently developed radiative Lattice-Boltzmann method. The latter promises to be more accurate than M1 at a comparable computational cost. Given that most methods for radiative transport or either inaccurate or unfeasible, the derivation of this new method represents a novel and possibly paradigm-changing contribution to an accurate inclusion of radiation in numerical astrophysics.


Nature ◽  
1963 ◽  
Vol 197 (4874) ◽  
pp. 1236-1236
Author(s):  
W. WALKINSHAW
Keyword(s):  

2019 ◽  
Vol 37 (03) ◽  
pp. 288-300 ◽  
Author(s):  
J. Badziak ◽  
J. Domański

AbstractThe multi-petawatt (PW) lasers currently being built in Europe as part of the Extreme Light Infrastructure (ELI) project will be capable of generating femtosecond light pulses of ultra-relativistic intensities (~1023–1024 W/cm2) that have been unattainable so far. Such laser pulses can be used for the production of high-energy ion beams with unique features that could be applied in various fields of scientific and technological research. In this paper, the prospect of producing ultra-intense (intensity ≥1020 W/cm2) ultra-short (pico- or femtosecond) high-energy ion beams using multi-PW lasers is outlined. The results of numerical studies on the acceleration of light (carbon) ions, medium-heavy (copper) ions and super-heavy (lead) ions driven by a femtosecond laser pulse of ultra-relativistic intensity, performed with the use of a multi-dimensional (2D3 V) particle-in-cell code, are presented, and the ion acceleration mechanisms and properties of the generated ion beams are discussed. It is shown that both in the case of light ions and in the case of medium-heavy and super-heavy ions, ultra-intense femtosecond multi-GeV ion beams with a beam intensity much higher (by a factor ~102) and ion pulse durations much shorter (by a factor ~104–105) than achievable presently in conventional radio frequency-driven accelerators can be produced at laser intensities of 1023 W/cm2 predicted for the ELI lasers. Such ion beams can open the door to new areas of research in high-energy density physics, nuclear physics and inertial confinement fusion.


Sign in / Sign up

Export Citation Format

Share Document