scholarly journals The muX project

Author(s):  
Frederik Wauters ◽  
Andreas Knecht

The project is conducting a series of muonic X-ray measurements in medium- and high-Z nuclei at PSI, utilizing a high-purity germanium detector array, in-beam muon detectors, and a modern digital data-acquisition system. A novel hydrogen target for muon transfer was developed, enabling measurements with as little as a few micrograms of target material. First measurements with radioactive Cm and Ra targets were conducted, aimed at determining their nuclear charge radii. These serve as important input for upcoming atomic parity violation experiments. The apparatus is also used to perform a feasibility study of an atomic parity violation experiment with the 2s-1s2s−1s muonic X-ray transition. In addition, the setup has been made available for a wider range of nuclear, particle, and solid-state physics measurements.

Author(s):  
Werner P. Rehbach ◽  
Peter Karduck

In the EPMA of soft x rays anomalies in the background are found for several elements. In the literature extremely high backgrounds in the region of the OKα line are reported for C, Al, Si, Mo, and Zr. We found the same effect also for Boron (Fig. 1). For small glancing angles θ, the background measured using a LdSte crystal is significantly higher for B compared with BN and C, although the latter are of higher atomic number. It would be expected, that , characteristic radiation missing, the background IB (bremsstrahlung) is proportional Zn by variation of the atomic number of the target material. According to Kramers n has the value of unity, whereas Rao-Sahib and Wittry proposed values between 1.12 and 1.38 , depending on Z, E and Eo. In all cases IB should increase with increasing atomic number Z. The measured values are in discrepancy with the expected ones.


2021 ◽  
Vol 105 ◽  
pp. 110-118
Author(s):  
Jie Si Ma ◽  
Fu Sheng Li ◽  
Yan Chun Zhao

X-ray Fluorescence (XRF) analysis technology is used widely to detect and measure elemental compositions of target samples. The MCNP code developed by LANL can be utilized to simulate and generate the XRF spectrum of any sample with various elemental compositions. However, one shortcoming of MCNP code is that it takes quite a lot of time (in hours or longer) to generate one XRF spectrum with reasonable statistical precision; the other shortcoming is that MCNP code cannot produce L shell spectrum accurately. In this paper, a new computation model based on the Sherman equation (i.e., Fundamental Parameters, FP) is proposed to overcome the drawbacks of the MCNP code. The most important feature of this model is to achieve a full and accurate generation of spectral information of each element in a target material very rapidly (in seconds or less), including both K and L shell spectral peaks. Furtherly, it is demonstrated that the simulated data by this new mode match the experimental data very well. It proves that the proposed model can be a better alternative of MCNP code in the application of generation the XRF spectra of many materials, in terms of speed and accuracy. The proposed model can perform the simulation of XRF spectra in situ both fast and accurately, which is essential for real-time calculation of chemical composition by use of X-ray spectrometer, especially for those trace elements in target materials.


Author(s):  
V. B. Bessonov

Introduction. X-ray inspection plays a unique role among all nondestructive testing methods for products and materials due to sufficiently high resolution and high penetrability. The present study is designed to consider the key features of microfocus X-ray sources, their areas of application, and main technical characteristics.Aim. The paper aims to systematize information and review modern X-ray radiation sources for the implementation of microfocus radiography.Materials and methods. The main designs of microfocus X-ray tubes (soldered and demountable) were considered relying on the experience of the St Petersburg State Electrotechnical University in developing and operating such equipment, as well as the experience and open-access publications of foreign researchers and developers. Data collected by leading research teams over the last ten years were analyzed.Results. The paper presents design features for each main type of microfocus X-ray tubes – soldered and demountable. All key structural elements are considered: an anode assembly, a cathode assembly, and a focusing system. The influence of anode target material on the X-ray tube radiation spectrum is shown. An original design of a liquid-anode microfocus X-ray tube is described to demonstrate its key features and advantages. In addition, the paper gives an overview of cathodes used in microfocus X-ray tubes (tungsten cathode and lanthanum hexaboride cathode), as well as providing a detailed description of calculations performed for focusing systems. Finally, the designs of modern X-ray tubes are presented.Conclusion. Modern X-ray tubes are high-tech products that allow for high-resolution research of various objects. The main advantage of testing performed with the use of X-ray tubes consists in high resolution (micron and submicron). The X-ray images of test objects used to determine their spatial resolution are given, which clearly illustrate the vast possibilities of this technology. In addition, ways to improve microfocus X-ray tubes are briefly discussed. The considered materials can be useful in selecting a nondestructive testing tool, as well as in developing and creating X-ray systems on the basis of microfocus X-ray tubes.


1986 ◽  
Vol 1 (5) ◽  
pp. 629-634 ◽  
Author(s):  
J.W. McCamy ◽  
M.J. Godbole ◽  
A.J. Pedraza ◽  
D.H. Lowndes

A simple, precise method for obtaining the average thickness of an amorphous layer formed by any surface treatment has been developed. The technique uses an x-ray diffractoeter to measure the reduction in the integrated intensity of several diffracted x-ray lines due to the near surface amorphous layer. The target material for generation of x rays is selected so that the emitted x rays are strongly absorbed by the specimen. This method permits thickness measurements down to ∼ 100 nm. It has been tested on a specimen of Fe80B20 on which an amorphous layer was produced by pulsed XeCl (308 nm) laser irradiation; the amorphous layer thickness was found to be 1.34 (∼0.1) um.


Sign in / Sign up

Export Citation Format

Share Document