scholarly journals Effects of Recombinant Angiogenin on Collagen Fiber Formation and Angiogenesis in the Dermis of Wistar Rats

2021 ◽  
Vol Volume 14 ◽  
pp. 187-196
Author(s):  
Natalia V Yurina ◽  
Tatiana A Ageeva ◽  
Aleksandr M Goryachkin ◽  
Nikolay A Varaksin ◽  
Tatiana G Ryabicheva ◽  
...  
2019 ◽  
Vol 30 (6) ◽  
pp. 599-606
Author(s):  
Carolina Maschietto Pucinelli ◽  
Raquel Assed Bezerra da Silva ◽  
Luã Lopes Borges ◽  
Alberto Tadeu do Nascimento Borges ◽  
Paulo Nelson-Filho ◽  
...  

Abstract The aim of this study was to evaluate the subcutaneous connective tissue response of isogenic mice after implantation of different glass ionomer-based cements (EQUIA® Forte Fil, EQUIA® Fil and Ketac™ Universal Aplicap™). Eighty-seven isogenic BALB/c mice were allocated in 12 groups, 9 were considered as experimental groups (Ketac, E. Fil and E. Forte at 7, 21 and 63 days) and 3 controls (empty polyethylene tubes at 7, 21 and 63 days). After the experimental periods, the subcutaneous connective tissue surrounding the implanted material was removed and subjected to histotechnical processing and staining with hematoxylin and eosin. A histopathological description of the tissue reaction surrounding each material and a semi-quantitative analysis of collagen fiber formation and inflammatory infiltrate were performed. Additionally, the thickness of the granulomatous tissue in contact with each material was measured. Data were analyzed statistically (α=0.05) by the Kruskal-Wallis test, followed by Dunn post-test. Initially, the collagen fiber formation was not different among all the tested materials (p>0.05) but was different at 21 days with the control group presenting the most advanced stage of collagen fiber formation. At 63 days, EQUIA® Forte Fil group showed the most advanced stage of collagen fiber formation, compared to EQUIA® Fil group (p<0.05). The inflammatory infiltrate was not different among the tested materials in any experimental period (p>0.05). The thickness of the granulomatous tissue was greater in the E. Forte group, compared to control in all periods. All glass ionomer-based cements showed tissue compatibility, according to the evaluated parameters.


1997 ◽  
Vol 22 (5) ◽  
pp. 533-538 ◽  
Author(s):  
Kazumi Akimoto ◽  
Masashi Ikeda ◽  
Kenji Sorimachi

2017 ◽  
Vol 312 (2) ◽  
pp. L217-L230 ◽  
Author(s):  
Márcia Isabel Bittencourt-Mernak ◽  
Nathalia M. Pinheiro ◽  
Fernanda P. R. Santana ◽  
Marina P. Guerreiro ◽  
Beatriz M. Saraiva-Romanholo ◽  
...  

Sakuranetin is the main isolate flavonoid from Baccharis retusa ( Asteraceae) leaves and exhibits anti-inflammatory and antioxidative activities. Acute respiratory distress syndrome is an acute failure of the respiratory system for which effective treatment is urgently necessary. This study investigated the preventive and therapeutic effects of sakuranetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Animals were treated with intranasal sakuranetin 30 min before or 6 h after instillation of LPS. Twenty-four hours after ALI was induced, lung function, inflammation, macrophages population markers, collagen fiber deposition, the extent of oxidative stress, and the expression of matrix metalloprotease-9 (MMP-9), tissue inhibitor of MMP-9 (TIMP-1) and NF-κB were evaluated. The animals began to show lung alterations 6 h after LPS instillation, and these changes persisted until 24 h after LPS administration. Preventive and therapeutic treatment with sakuranetin reduced the neutrophils in the peripheral blood and in the bronchial alveolar lavage. Sakuranetin treatment also reduced macrophage populations, particularly that of M1-like macrophages. In addition, sakurnaetin treatment reduced keratinocyte-derived chemokines (IL-8 homolog) and NF-κB levels, collagen fiber formation, MMM-9 and TIMP-1-positive cells, and oxidative stress in lung tissues compared with LPS animals treated with vehicle. Finally, sakuranetin treatment also reduced total protein, and the levels of TNF-α and IL-1β in the lung. This study shows that sakuranetin prevented and reduced pulmonary inflammation induced by LPS. Because sakuranetin modulates oxidative stress, the NF-κB pathway, and lung function, it may constitute a novel therapeutic candidate to prevent and treat ALI.


1951 ◽  
Vol 33 (1) ◽  
pp. 155-164 ◽  
Author(s):  
Norman I. Gold ◽  
Bernard S. Gould

1995 ◽  
Vol 414 ◽  
Author(s):  
G. D. Pins ◽  
D. L. Christiansen ◽  
R. Patel ◽  
F. H. Silver

AbstractThe primary goal of the biomaterials scientist and tissue engineer is to create a biocompatible implant which mimics the mechanical and morphological properties of the tissue being replaced. In vitro experimentation has documented the propensity of soluble type I collagen to self-assemble and form microscopic collagen fibrils with periodic banding analogous to native collagen fiber. Our laboratory has further investigated in vitro self-assembly by incorporating several of the “natural” processes into a multi-step fiber formation procedure which generates macroscopic collagen fiber from its molecular constituents. Results of uniaxial tensile tests and ultrastructural analyses indicate that these coextruded and stretched collagen fibers have mechanical properties and fibrillar substructure comparable to that observed in native collagen fiber.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2646
Author(s):  
Alexes C. Daquinag ◽  
Zhanguo Gao ◽  
Cale Fussell ◽  
Kai Sun ◽  
Mikhail G. Kolonin

Proper processing of collagens COL1 and COL6 is required for normal function of adipose tissue and skeletal muscle. Proteoglycan decorin (DCN) regulates collagen fiber formation. The amino-terminus of DCN is modified with an O-linked glycosaminoglycan (GAG), the function of which has remained unclear. Previously, non-glycanated DCN (ngDCN) was identified as a marker of adipose stromal cells. Here, we identify MMP14 as the metalloprotease that cleaves DCN to generate ngDCN. We demonstrate that mice ubiquitously lacking DCN GAG (ngDCN mice) have reduced matrix rigidity, enlarged adipocytes, fragile skin, as well as skeletal muscle hypotrophy, fibrosis, and dysfunction. Our results indicate that DCN deglycanation results in reduced intracellular DCN—collagen binding and increased production of truncated COL6 chains, leading to aberrant procollagen processing and extracellular localization. This study reveals that the GAG of DCN functions to regulate collagen assembly in adipose tissue and skeletal muscle and uncovers a new mechanism of matrix dysfunction in obesity and aging.


2011 ◽  
Vol 22 (3) ◽  
pp. 203-211 ◽  
Author(s):  
Alexandra Mussolino de Queiroz ◽  
Sada Assed ◽  
Alberto Consolaro ◽  
Paulo Nelson-Filho ◽  
Mario Roberto Leonardo ◽  
...  

This study evaluated the response of the subcutaneous connective tissue of BALB/c mice to root filling materials indicated for primary teeth: zinc oxide/eugenol cement (ZOE), Calen paste thickened with zinc oxide (Calen/ZO) and Sealapex sealer. The mice (n=102) received polyethylene tube implants with the materials, thereby forming 11 groups, as follows: I, II, III: Calen/ZO for 7, 21 and 63 days, respectively; IV, V, VI: Sealapex for 7, 21 and 63 days, respectively; VII, VIII, IX: ZOE for 7, 21 and 63 days, respectively; X and XI: empty tube for 7 and 21 days, respectively. The biopsied tissues were submitted to histological analysis (descriptive analysis and semi-quantitative analysis using a scoring system for collagen fiber formation, tissue thickness and inflammatory infiltrate). A quantitative analysis was performed by measuring the area and thickness of the granulomatous reactionary tissue (GRT). Data were analyzed by Kruskal-Wallis, ANOVA and Tukey's post-hoc tests (?=0.05). There was no significant difference (p>0.05) among the materials with respect to collagen fiber formation or GRT thickness. However, Calen/ZO produced the least severe inflammatory infiltrate (p<0.05). The area of the GRT was significantly smaller (p<0.05) for Calen/ZO and Sealapex. In conclusion, Calen/ZO presented the best tissue reaction, followed by Sealapex and ZOE.


1952 ◽  
Vol 96 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Thomas G. Morrione

Collagen fibers have been formed in vitro by the action of heparm on solutions of collagen. Heparin was found to be effective in inducing collagen fiber formation when present in concentrations as low as 1–80,000. It is postulated that mast cells, by virtue of the heparin which they produce, may play a role in the formation of collagen.


Sign in / Sign up

Export Citation Format

Share Document