scholarly journals Novel artificial cell microencapsulation of a complex gliclazide-deoxycholic bile acid formulation: a characterization study

2014 ◽  
pp. 1003 ◽  
Author(s):  
Hani Al-Salami ◽  
Armin Mooranian ◽  
Rebecca Negrulj ◽  
Nigel Chen-Tan ◽  
Hesham Al-Sallami ◽  
...  
2019 ◽  
Vol 10 (9) ◽  
pp. 563-571
Author(s):  
Armin Mooranian ◽  
Nassim Zamani ◽  
Ryu Takechi ◽  
Hesham Al-Sallami ◽  
Momir Mikov ◽  
...  

Aim: Common features in insulin-resistance diabetes include inflammation and liver damage due to bile acid accumulation. Results & methodology: This study aimed to test in vivo pharmacological effects of combining two drugs, ursodeoxycholic acid that has bile acid regulatory effects, and probucol (PB) that has potent anti-oxidative stress effects, using a new poly(meth)acrylate nano-targeting formulation on prediabetic mice. Mice were made diabetic and were fed daily with either PB, nanoencapsulated PB or nanoencapsulated PB-ursodeoxycholic acid before blood, tissues, urine and feces were collected for inflammation and bile acid measurements. The nanoencapsulated PB-ursodeoxycholic acid formulation increased plasma IL-10, and increased the concentration of primary bile acids in the liver and heart. Conclusion: Results suggest potential applications in regulating IL-10 in insulin-resistance prediabetes.


2021 ◽  
Vol 12 (4) ◽  
pp. 68
Author(s):  
Armin Mooranian ◽  
Melissa Jones ◽  
Corina Mihaela Ionescu ◽  
Daniel Walker ◽  
Susbin Raj Wagle ◽  
...  

Pancreatic β-cell loss and failure with subsequent deficiency of insulin production is the hallmark of type 1 diabetes (T1D) and late-stage type 2 diabetes (T2D). Despite the availability of parental insulin, serious complications of both types are profound and endemic. One approach to therapy and a potential cure is the immunoisolation of β cells via artificial cell microencapsulation (ACM), with ongoing promising results in human and animal studies that do not depend on immunosuppressive regimens. However, significant challenges remain in the formulation and delivery platforms and potential immunogenicity issues. Additionally, the level of impact on key metabolic and disease biomarkers and long-term benefits from human and animal studies stemming from the encapsulation and delivery of these cells is a subject of continuing debate. The purpose of this review is to summarise key advances in this field of islet transplantation using ACM and to explore future strategies, limitations, and hurdles as well as upcoming developments utilising bioengineering and current clinical trials.


Author(s):  
Richard Montione ◽  
Muhammad Ashraf

Osmolarity of a fixative vehicle has long been known to have an effect on the tissue preservation. An increase in tissue osmolarity occurs in ischemia-damaged tissue and affects the morphology. In this study, we examined cellular changes in ischemic rat myocardium induced by varying fixative toxicity.Rats were sacrificed by decapitation and the hearts immediately removed and retrogradily perfused through the aorta with anoxic Kurbs-Henseleit medium. Hearts were then placed in a bag with a small amount of medium at 37°C for 90 minutes. Hearts were perfusion-fixed using 2% glutaraldehyde in 0.1 M cacodylate buffer pH -7.3 at three osmolarities. The isotonic buffer was adjusted to 311 mOsm/kg using D-manitol. Hypertonic buffers were adjusted to 375 and 400 mOsm/kg. One-half hour after perfusion fixation, the hearts were sliced and cut into small blocks and allowed to fix overnight at 4°C. Blocks were post fixed in osmium, en bloc stained in uranyl acetate, dehydrated in ethanol and embedded in Spurr medium.


Sign in / Sign up

Export Citation Format

Share Document