scholarly journals Preparation, characterization, and evaluation of amphotericin B-loaded MPEG-PCL-g-PEI micelles for local treatment of oral Candida albicans

2017 ◽  
Vol Volume 12 ◽  
pp. 4269-4283 ◽  
Author(s):  
Li Zhou ◽  
Peipei Zhang ◽  
Zhuo Chen ◽  
Shaona Cai ◽  
Ting Jing ◽  
...  
2003 ◽  
Vol 47 (4) ◽  
pp. 1200-1206 ◽  
Author(s):  
Robert S. Liao ◽  
Robert P. Rennie ◽  
James A. Talbot

ABSTRACT Amphotericin B treatment was previously shown to inhibit Candida albicans reproduction and reduce the fluorescence of vitality-specific dyes without causing a corresponding increase in the fluorescence of the mortality-specific dyes bis-(1,3-dibutylbarbituric acid)trimethine oxonol and SYBR Green Ι. In the present study, we have confirmed these results and have shown that the numbers of CFU are reduced by 99.9% by treatment with 0.5 μg of amphotericin B per ml for 10 h at 35°C. This reduction was not due to fungal cell death. First, the level of reduction of the tetrazolium salt 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide increased in the presence of concentrations of amphotericin B that caused greater than 90% reductions in the numbers of CFU. Second, fungal cells treated with amphotericin B at a concentration of 0.5 μg/ml were resuscitated by further incubation at 22°C for 15 h in the continued presence of amphotericin B. Third, recovery of the ability to replicate was prevented by sequential treatment with 20 μg of miconazole per ml, which also increased the fluorescence of mortality-specific dyes to near the maximal levels achieved with 0.9 μg of amphotericin B per ml. Sequential treatment with fluconazole and flucytosine did not increase the levels of staining with the mortality-specific dyes. Itraconazole was less effective than ketoconazole, which was less effective than miconazole. The practice of equating the loss of the capacity of C. albicans to form colonies with fungal cell death may give incorrect results in assays with amphotericin B, and the results of assays with caution with other antifungal agents that are lipophilic or that possess significant postantifungal effects may need to be interpreted.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


2015 ◽  
Vol 44 (1-2) ◽  
pp. 77-90 ◽  
Author(s):  
Barbara Chudzik ◽  
Mateusz Koselski ◽  
Aleksandra Czuryło ◽  
Kazimierz Trębacz ◽  
Mariusz Gagoś

2000 ◽  
Vol 44 (10) ◽  
pp. 2752-2758 ◽  
Author(s):  
Rama Ramani ◽  
Vishnu Chaturvedi

ABSTRACT Candida species other than Candida albicansfrequently cause nosocomial infections in immunocompromised patients. Some of these pathogens have either variable susceptibility patterns or intrinsic resistance against common azoles. The availability of a rapid and reproducible susceptibility-testing method is likely to help in the selection of an appropriate regimen for therapy. A flow cytometry (FC) method was used in the present study for susceptibility testing ofCandida glabrata, Candida guilliermondii,Candida krusei, Candida lusitaniae,Candida parapsilosis, Candida tropicalis, andCryptococcus neoformans based on accumulation of the DNA binding dye propidium iodide (PI). The results were compared with MIC results obtained for amphotericin B and fluconazole using the NCCLS broth microdilution method (M27-A). For FC, the yeast inoculum was prepared spectrophotometrically, the drugs were diluted in either RPMI 1640 or yeast nitrogen base containing 1% dextrose, and yeast samples and drug dilutions were incubated with amphotericin B and fluconazole, respectively, for 4 to 6 h. Sodium deoxycholate and PI were added at the end of incubation, and fluorescence was measured with a FACScan flow cytometer (Becton Dickinson). The lowest drug concentration that showed a 50% increase in mean channel fluorescence compared to that of the growth control was designated the MIC. All tests were repeated once. The MICs obtained by FC for all yeast isolates except C. lusitaniae were in very good agreement (within 1 dilution) of the results of the NCCLS broth microdilution method. Paired ttest values were not statistically significant (P = 0.377 for amphotericin B; P = 0.383 for fluconazole). Exceptionally, C. lusitaniae isolates showed higher MICs (2 dilutions or more) than in the corresponding NCCLS broth microdilution method for amphotericin B. Overall, FC antifungal susceptibility testing provided rapid, reproducible results that were statistically comparable to those obtained with the NCCLS method.


Sign in / Sign up

Export Citation Format

Share Document