scholarly journals Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy

2018 ◽  
Vol Volume 13 ◽  
pp. 1851-1865 ◽  
Author(s):  
Zhen Yang ◽  
Juanli Duan ◽  
Jianlin Wang ◽  
Qi Liu ◽  
Runze Shang ◽  
...  
2020 ◽  
Vol 1 (1) ◽  
pp. 105-135
Author(s):  
Nicholas Nelson ◽  
John Port ◽  
Mukesh Pandey

The aim of the present educational review on superparamagnetic iron oxide nanoparticles (SPIONs) is to inform and guide young scientists and students about the potential use and challenges associated with SPIONs. The present review discusses the basic concepts of magnetic resonance imaging (MRI), basic construct of SPIONs, cytotoxic challenges associated with SPIONs, shape and sizes of SPIONs, site-specific accumulation of SPIONs, various methodologies applied to reduce cytotoxicity including coatings with various materials, and application of SPIONs in targeted delivery of chemotherapeutics (Doxorubicin), biotherapeutics (DNA, siRNA), and positron emission tomography (PET) imaging applications.


Nano Research ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 2431-2448 ◽  
Author(s):  
Nicoletta Depalo ◽  
Rosa Maria Iacobazzi ◽  
Gianpiero Valente ◽  
Ilaria Arduino ◽  
Silvia Villa ◽  
...  

2016 ◽  
Vol 25 (3) ◽  
pp. 375-383 ◽  
Author(s):  
Bogdan Silviu Ungureanu ◽  
Cristian-Mihail Teodorescu ◽  
Adrian Săftoiu

Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver, ranking as the second most common cause of death from cancer worldwide. Magnetic nanoparticles (MNPs) have been used so far in tumor diagnosis and treatment, demonstrating great potential and promising results. In principle, three different approaches can be used in the treatment of tumors with superparamagnetic iron oxide nanoparticles: magnetically induced hyperthermia, drug targeting and selective suppression of tumor growth. This review focuses on the use of iron oxide nanoparticles for the diagnosis and treatment of liver cancer and offers a walkthrough from the MNPs imaging applicability to further therapeutic options, including their potential flaws. The MNP unique physical and biochemical properties will be mentioned in close relationship to their subsequent effects on the human body, and, also, their toxic potential will be noted. A presentation of what barriers the MNPs should overcome to be more successful will conclude this review. Abbreviations: AMF: Alternating magnetic field; DOX: Doxorubicin; GD: Gadolinium; HCC: hepatocellular carcinoma; 131I: Iodine 131; MDT: Magnetic drug targeting; ML: Magnetoliposomes; MNP: magnetic nanoparticles; MRI: Magnetic Resonance Imaging; PNIPA: Poly-N-isopropylacrylamide; SPIONS: Superparamagnetic iron oxide nanoparticles; VEGF: Vascular endothelial growth factor.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


Sign in / Sign up

Export Citation Format

Share Document