scholarly journals DOPING DEPENDENCY ON ABSORPTION SPECTRUM OF INTRABAND TRANSITION BASED PHOTODETECTOR

2020 ◽  
Vol 8 (3) ◽  
pp. 817-823
Author(s):  
Sumit Narayan Saurov ◽  
2019 ◽  
Vol 107 (3) ◽  
pp. 305
Author(s):  
Mengmei Geng ◽  
Yuting Long ◽  
Tongqing Liu ◽  
Zijuan Du ◽  
Hong Li ◽  
...  

Surface-enhanced Raman Scattering (SERS) fiber probe provides abundant interaction area between light and materials, permits detection within limited space and is especially useful for remote or in situ detection. A silver decorated SERS fiber optic probe was prepared by hydrothermal method. This method manages to accomplish the growth of silver nanoparticles and its adherence on fiber optic tip within one step, simplifying the synthetic procedure. The effects of reaction time on phase composition, surface plasmon resonance property and morphology were investigated by X-ray diffraction analysis (XRD), ultraviolet-visible absorption spectrum (UV-VIS absorption spectrum) and scanning electron microscope (SEM). The results showed that when reaction time is prolonged from 4–8 hours at 180 °C, crystals size and size distribution of silver nanoparticles increase. Furthermore, the morphology, crystal size and distribution density of silver nanoparticles evolve along with reaction time. A growth mechanism based on two factors, equilibrium between nucleation and growth, and the existence of PVP, is hypothesized. The SERS fiber probe can detect rhodamin 6G (R6G) at the concentration of 10−6 M. This SERS fiber probe exhibits promising potential in organic dye and pesticide residue detection.


2013 ◽  
Vol E96.C (10) ◽  
pp. 1311-1318 ◽  
Author(s):  
Kyoya TAKANO ◽  
Shuhei AMAKAWA ◽  
Kosuke KATAYAMA ◽  
Mizuki MOTOYOSHI ◽  
Minoru FUJISHIMA

2020 ◽  
Vol 16 (4) ◽  
pp. 556-567
Author(s):  
Asma Khalil ◽  
Zubair Ahmad ◽  
Farid Touati ◽  
Mohamed Masmoudi

Background: The photo-absorption and light trapping through the different layers of the organic solar cell structures are a growing concern now-a-days as it affects dramatically the overall efficiency of the cells. In fact, selecting the right material combination is a key factor in increasing the efficiency in the layers. In addition to good absorption properties, insertion of nanostructures has been proved in recent researches to affect significantly the light trapping inside the organic solar cell. All these factors are determined to expand the absorption spectrum and tailor it to a wider spectrum. Objective: The purpose of this investigation is to explore the consequence of the incorporation of the Ag nanostructures, with different sizes and structures, on the photo absorption of the organic BHJ thin films. Methods: Through a three-dimensional Maxwell solver software, Lumerical FDTD, a simulation and comparison of the optical absorption of the three famous organic materials blends poly(3- hexylthiophene): phenyl C71 butyric acid methyl ester (P3HT:PCBM), poly[N-9″-heptadecanyl-2,7- carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDTBT:PCBM) and poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt- 4,7-(2,1,3-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDPDTBT:PCBM) has been conducted. Furthermore, FDTD simulation study of the incorporation of nanoparticles structures with different sizes, in different locations and concentrations through a bulk heterojunction organic solar cell structure has also been performed. Results: It has been demonstrated that embedding nanostructures in different locations of the cell, specifically in the active layer and the hole transporting layer had a considerable effect of widening the absorption spectrum and increasing the short circuit current. The effect of incorporation the nanostructures in the active layer has been proved to be greater than in the HTL. Furthermore, the comparison results showed that, PCDTBT:PCBM is no more advantageous over P3HT:PCBM and PCPDTBT:PCBM, and P3HT:PCBM took the lead and showed better performance in terms of absorption spectrum and short circuit current value. Conclusion: This work revealed the significant effect of size, location and concentration of the Ag nanostructures while incorporated in the organic solar cell. In fact, embedding nanostructures in the solar cell widen the absorption spectrum and increases the short circuit current, this result has been proven to be significant only when the nanostructures are inserted in the active layer following specific dimensions and structures.


1963 ◽  
Vol 53 (2) ◽  
pp. 143-146 ◽  
Author(s):  
SATOSHI NAKAMURA ◽  
TAKAO NAKAMURA ◽  
YASUYUKI OGURA

Nature ◽  
1932 ◽  
Vol 130 (3275) ◽  
pp. 205-205 ◽  
Author(s):  
R. W. HERBERT ◽  
E. L. HIRST

1994 ◽  
Vol 358 ◽  
Author(s):  
G. Gumbs

ABSTRACTA self-consistent many-body theory is developed to study the effect of temperature and electron density on the interband absorption coefficient and the frequency-dependent refractive index for an array of isolated quantum wires. The peaks in the absorption coefficient correspond to interband transitions resulting in the resonant absorption of light. The oscillations in the derivative spectrum are due to the quantization of the energy levels related to the in-plane confining potential for such reduced dimensional systems. There are appreciable changes in the absorption spectrum when the electron density or temperature is increased. One interband transition peak is suppressed in the high electron density limit and the thermal depopulation effect on the electron subbands can be easily seen when the temperature is high. We also find that the exciton coupling weakens the shoulder features in the absorption spectrum. This study is relevant to optical characterization of the confining potential and the areal density of electrons using photoreflectance. By using incident light with tunable frequencies in the interband excitation regime, contactless photoreflectance measurements may be carried out and the data compared with our calculations. By fitting the numerical results to the peak positions of the photoreflectance spectrum, the number of electrons in each wire may be extracted.


Sign in / Sign up

Export Citation Format

Share Document