scholarly journals Pre-emergence herbicidal activity and persistence of 2,4-di-tertbutylphenol in relation to soil types

Plant Omics ◽  
2021 ◽  
pp. 30-37
Author(s):  
Norhafizah Md Zain ◽  
Mazira Che Mat ◽  
Chuah Tse Seng

Although 2,4-di-tert-butylphenol (2,4-DTBP) has demonstrated strong phytotoxic effect on various weedy plants in previous findings, research on its pre-emergence herbicidal activity in the soil is still scanty. The aim of this study was to investigate the effects of two soil types on pre-emergence herbicidal activity and persistence of 2,4-DTBP. The bioassay was carried out in a growth chamber where goosegrass [Eleusine indica (L.) Gaertn.] seeds were sown in different rates of 2,4-DTBP in two soil series under sterilized and non-sterilized soil conditions. Bioassays of each treatment were conducted in four replicates and arranged in completely randomized design. 2,4-DTBP exhibited potent pre-emergence activity as a root inhibitor where it completely inhibited (100% inhibition) of the root growth of E. indica in sandy loam soil at an application rate of 6.14 kg ai/ha. 2,4-DTBP was rapidly detoxified in silt loam soil as a result of high microbial activity where it completely lost its phytotoxicity by giving 100% emergence within 10 weeks even it was applied at an application as high as 20.4 kg ai/ha. However, 2,4-DTBP remained highly phytotoxic in sandy loam soil where it reduced the root and shoot growth by 47 and 36%, respectively, throughout 10 weeks duration of the investigation. The presence of microbes in non-sterilized soil further suggest that soil microbes may modify the chemical structure of the 2,4-DTBP, which in turn decreased its toxicity. The high level of pre-emergence herbicidal activity in conjunction with its biodegradation in silt loam soil imply that 2,4-DTBP may have potential for development as a natural-soil applied herbicide

2001 ◽  
Vol 81 (1) ◽  
pp. 45-52 ◽  
Author(s):  
R H Azooz ◽  
M A Arshad

In areas of the northwestern Canadian Prairies, barley and canola are grown in a short growing season with high rainfall variability. Excessively dry soil in conventional tillage (CT) in dry periods and excessively wet soil in no-tillage (NT) in wet periods could cause a significant decrease in crop production by influencing the availability of soil water. The effects of CT, NT and NT with a 7.5-cm residue-free strip on the planting rows (NTR) on soil water drying (–dW/dt) and recharge (dW/dt) rates were studied in 1992 and 1993 during wet and dry periods to evaluate the impact of NTR, NT and CT systems on soil moisture condition. The soils, Donnelly silt loam and Donnelly sandy loam (both Gray Luvisol) were selected and soil water content by depth was measured by time domain reflectometry. Water retained at 6 matric potentials from –5 to –160 kPa were observed. In the field study, –dW/dt was significantly greater in CT than in NT in the silt loam for the 0- to 30-cm layer during the first 34 d after planting in 1992. The 0- to 30-cm soil layer in CT and NTR dried faster than in NT during a period immediately following heavy rainfall in the silt loam in 1993. The drying coefficient (–Kd ) was significantly greater in CT and NTR than in NT in the silt loam soil in 1993 and in the sandy loam soil in 1992 in the top 30-cm depth. The recharge coefficient (Kr) was significantly greater in NT and NTR than in CT for the silt loam soil. The NTR system increased the –dW/dt by 1.2 × 10-2 to 12.1 × 10-2 cm d-1 in 1992 and 1993 in the silt loam soil and by 10.2 × 10-2 cm d-1 in 1993 in the sandy loam soil as compared with NT. The dW/dt was 8.1 × 10-2 cm d-1 greater in NTR in 1992 and 1993 in the silt loam soil and was 1.9 × 10-2 greater in NTR in 1992 than in CT in the sandy loam soil. The laboratory study indicated that NT soils retained more water than the CT soils. The NTR practice maintained better soil moisture conditions for crop growth than CT in dry periods than NT in wet periods. Compared with NT, the NTR avoided prolonged near-saturated soil conditions with increased soil drying rate under extremely wet soil. Key words: Water drying, water recharge, water depletion, wet and drying periods, hydraulic properties, soil capacity to retain water


Weed Science ◽  
1997 ◽  
Vol 45 (2) ◽  
pp. 198-204 ◽  
Author(s):  
Nicholas D. Polge ◽  
Michael Barrett

Growth chamber experiments were conducted to determine the effects of soil temperature on the response of corn to imazaquin soil residues. In a silt loam soil, 24/30 C (night/day) or 18/24 C soil temperatures caused greater inhibition of shoot growth than 12/18 C soil temperature. However, in a sandy loam soil, inhibition of corn shoot growth was maximal at 18/24 C, and there was no difference in shoot-growth inhibition between the lowest and highest temperatures. Higher soil temperatures caused greater root-growth inhibition in the sandy loam soil but not in silt loam soil. Soil temperature did not affect14C-imazaquin uptake from either soil. Higher soil temperatures increased the translocation of imazaquin from root to shoot tissue in both soils. In the sandy loam soil, imazaquin metabolism in root tissue decreased as soil temperature increased, with twice as much parent herbicide recovered from roots of plants grown under the highest compared with the lowest temperature treatments. Soil temperature had no effect on imazaquin metabolism in shoot tissue. Longer-term experiments (22 d) were conducted with the sandy loam soil to determine the effect of changes in air temperature on corn response to imazaquin soil residues. Plants exposed to 24/30 C for 7 or 14 d of the final 14-d growing period showed greater inhibition of shoot growth compared with plants maintained at 12/18 C. Uptake and translocation of14C-imazaquin to shoots was greater in plants maintained at 24/30 C throughout the final 14-d period than in plants maintained at 12/18 C. Plants grown for 7 d at 24/30 C during the final 14-d period either preceding or following 7 d growth at 12/18 C showed increased translocation of imazaquin to shoots but no difference in imazaquin uptake compared with plants maintained at 12/18 C. Neither air nor soil temperature treatments had any effect on imazaquin concentration in soil water.


2004 ◽  
Vol 3 (1) ◽  
pp. 316
Author(s):  
M. Saleem Akhtar ◽  
Tammo S. Steenhuis ◽  
Brian K. Richards ◽  
Murray B. McBride

1982 ◽  
Vol 62 (4) ◽  
pp. 969-977 ◽  
Author(s):  
PATRICIA S. HOLLOWAY ◽  
ROBERT M. VAN VELDHUIZEN ◽  
CECIL STUSHNOFF ◽  
DAVID K. WILDUNG

Vegetative growth of lingonberries was observed on plants growing in four unsterilized, native-Alaskan substrates: coarsely-ground Lemeta peat, Fairbanks silt loam soil, a mixture of peat and silt loam soil and washed Chena very fine sandy loam soil. Following three growing seasons, plants in the peat treatment showed the greatest increase in vegetative growth as revealed by the number of new stems produced, stem length and dry weight per plant. Leaf size did not differ among substrate treatments. The leaves on plants grown in the peat substrate remained green throughout the entire experiment. The leaves of plants in all other treatments showed varying degrees of chlorosis followed by reddening and necrosis. Differences in concentration of N, P, K, Mn, Fe, Zn and Al in whole-plant tissue samples were recorded. The results indicate lingonberries should be grown in a peat substrate for maximum growth and dry matter accumulation.


Geoderma ◽  
2019 ◽  
Vol 337 ◽  
pp. 880-892 ◽  
Author(s):  
Z.M. Lan ◽  
C.R. Chen ◽  
M. Rezaei Rashti ◽  
H. Yang ◽  
D.K. Zhang

Weed Science ◽  
1985 ◽  
Vol 33 (2) ◽  
pp. 229-232 ◽  
Author(s):  
D. J. Rydrych

Preemergence and postemergence application of metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazine-5(4H)-one] at 0.6 and 1.1 kg ai/ha controlled downy brome (Bromus tectorumL. ♯ BROTE) in winter wheat (Triticum aestivumL. ‘McDermid’) but caused considerable injury without the use of activated carbon over the seeded row. Activated carbon applied in 5-cm bands over the seeded row at 84, 167, and 336 kg/ha protected winter wheat at Pendleton on a silt loam soil. On a sandy loam soil, only a 336 kg/ha rate provided protection from metribuzin. Metribuzin toxicity to winter wheat was more difficult to neutralize when applied preemergence. Downy brome control was not reduced by carbon applied over the wheat row. The best treatment in this study was carbon at 336 kg/ha applied preemergence over the row followed by metribuzin at 0.6 or 1.1 kg/ha postemergence. A 10-week delay between preemergence carbon banding and postemergence metribuzin protected winter wheat from chemical injury.


1969 ◽  
Vol 9 (39) ◽  
pp. 428 ◽  
Author(s):  
VF McClelland

The production and persistence of nine cultivars of lucerne were studied at the Mallee Research Station, Walpeup, Victoria, over three seasons. Hunter River, Siro Peruvian, and African lucerne were similar in yield, but Siro Peruvian was less persistent. The superior yield of these three cultivars over two accessions of Flandria, Du Puits, and Socheville was largely due to their greater winter production. Two lines of Canadian creeping-rooted lucerne were found to be entirely unsuited to this district. Hunter River and Siro Peruvian lucerne were also compared on a sand and a sandy loam soil at Walpeup. The relative production of the two cultivars was the same on the two soil types but the effect of soil type was marked. The production and persistence of lucerne grown on the sand was far superior to that on the sandy loam.


Weed Science ◽  
1968 ◽  
Vol 16 (4) ◽  
pp. 494-498 ◽  
Author(s):  
A. F. Wiese ◽  
E. B. Hudspeth

In a 3-year study on four soil types, subsurface application just ahead of a planter with a device that removed the top from the bed, applied a band of spray, and covered the band with soil reduced weed control in cotton (Gossypium hirsutum L.) obtained with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), 2,4-bis(isopropylamino)-6-methylmercapto-s-triazine (prometryne), 3-(hexahydro-4,7-methanoindan-5-yl)-1,1-dimethylurea (norea), dimethyl-2,3,5,6-tetrachloroterephthalate (DCPA), and 1,1-dimethyl-3(α,α,α,-trifluoro-m-tolyl)urea (fluometuron) compared to applications on the soil surface. This machine improved weed control with α,α,α,-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin). Shallow incorporation, with two helical blades, after planting increased weed control with trifluralin, diuron, and DCPA by 10% or more over the surface applications. This incorporator increased weed control obtained with prometryne and norea 5%. Very shallow incorporation, with metal tines, after planting improved weed control obtained with trifluralin and DCPA 18 and 11%, respectively. Weed control with norea was increased 7%, but metal tines did not appreciably affect weed control obtained with prometryne, diuron, or fluometuron. Compared to surface applications, incorporation increased cotton injury with diuron, norea, prometryne, and fluometuron on sandy loam soil.


2009 ◽  
Vol 328 (1-2) ◽  
pp. 303-312 ◽  
Author(s):  
Ahmed Elgharably ◽  
Petra Marschner ◽  
Pichu Rengasamy

Sign in / Sign up

Export Citation Format

Share Document