scholarly journals A Three Dimensional Wave Activity Flux Applicable to Inertio-Gravity Waves

SOLA ◽  
2006 ◽  
Vol 2 ◽  
pp. 108-111 ◽  
Author(s):  
Saburo Miyahara
2013 ◽  
Vol 70 (6) ◽  
pp. 1603-1615 ◽  
Author(s):  
Takenari Kinoshita ◽  
Kaoru Sato

Abstract A companion paper formulates the three-dimensional wave activity flux (3D-flux-M) whose divergence corresponds to the wave forcing on the primitive equations. However, unlike the two-dimensional wave activity flux, 3D-flux-M does not accurately describe the magnitude and direction of wave propagation. In this study, the authors formulate a modification of 3D-flux-M (3D-flux-W) to describe this propagation using small-amplitude theory for a slowly varying time-mean flow. A unified dispersion relation for inertia–gravity waves and Rossby waves is also derived and used to relate 3D-flux-W to the group velocity. It is shown that 3D-flux-W and the modified wave activity density agree with those for inertia–gravity waves under the constant Coriolis parameter assumption and those for Rossby waves under the small Rossby number assumption. To compare 3D-flux-M with 3D-flux-W, an analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) data is performed focusing on wave disturbances in the storm tracks during April. While the divergence of 3D-flux-M is in good agreement with the meridional component of the 3D residual mean flow associated with disturbances, the 3D-flux-W divergence shows slight differences in the upstream and downstream regions of the storm tracks. Further, the 3D-flux-W magnitude and direction are in good agreement with those derived by R. A. Plumb, who describes Rossby wave propagation. However, 3D-flux-M is different from Plumb’s flux in the vicinity of the storm tracks. These results suggest that different fluxes (both 3D-flux-W and 3D-flux-M) are needed to describe wave propagation and wave–mean flow interaction in the 3D formulation.


2019 ◽  
Vol 124 (12) ◽  
pp. 6120-6142
Author(s):  
Yayoi Harada ◽  
Kaoru Sato ◽  
Takenari Kinoshita ◽  
Ryosuke Yasui ◽  
Toshihiko Hirooka ◽  
...  

2014 ◽  
Vol 71 (9) ◽  
pp. 3427-3438 ◽  
Author(s):  
Takenari Kinoshita ◽  
Kaoru Sato

Abstract The large-scale waves that are known to be trapped around the equator are called equatorial waves. The equatorial waves cause mean zonal wind acceleration related to quasi-biennial and semiannual oscillations. The interaction between equatorial waves and the mean wind has been studied by using the transformed Eulerian mean (TEM) equations in the meridional cross section. However, to examine the three-dimensional (3D) structure of the interaction, the 3D residual mean flow and wave activity flux for the equatorial waves are needed. The 3D residual mean flow is expressed as the sum of the Eulerian mean flow and Stokes drift. The present study derives a formula that is approximately equal to the 3D Stokes drift for equatorial waves on the equatorial beta plane (EQSD). The 3D wave activity flux for equatorial waves whose divergence corresponds to the wave forcing is also derived using the EQSD. It is shown that the meridionally integrated 3D wave activity flux for equatorial waves is proportional to the group velocity of equatorial waves.


2007 ◽  
Vol 64 (6) ◽  
pp. 2126-2134 ◽  
Author(s):  
Lingkun Ran ◽  
Shouting Gao

A three-dimensional, nonhydrostatic local wave-activity relation for pseudomomentum is derived from the nonhydrostatic primitive equations in Cartesian coordinates by using an extension of the momentum–Casimir method. The stationary and zonally symmetric basic states are chosen and a Casimir function, which is the single-valued function of potential vorticity and potential temperature, is introduced in the derivation. The wave-activity density and wave-activity flux of the local wave-activity relation for pseudomomentum are expressed entirely in terms of Eulerian quantities so that they are easily calculated with atmospheric data and do not require the knowledge of particle placements. Constructed in the ageostrophic and nonhydrostatic dynamical framework, the local wave-activity relation for pseudomomentum is applicable to diagnosing the evolution and propagation of mesoscale weather systems.


2019 ◽  
Vol 76 (3) ◽  
pp. 851-863
Author(s):  
Takenari Kinoshita ◽  
Kaoru Sato ◽  
Kentaro Ishijima ◽  
Masayuki Takigawa ◽  
Yousuke Yamashita

Abstract Three-dimensional (3D) quasi-residual mean flow is derived to diagnose 3D dynamical material transport associated with stationary planetary waves. The 3D quasi-residual mean vertical flow does not include the vertical flow due to tilting of the potential temperature caused by stationary waves, which is apparent but not seen in the mass-weighted isentropic mean state. Thus, the quasi-residual mean vertical flow is balanced with the term of diabatic heating rate. The 3D quasi-residual mean horizontal flow is balanced with the sum of the forcing due to transient wave activity flux divergence and the forcing associated with fluctuation of the potential vorticity due to stationary waves (defined as the effective Coriolis forcing). The zonal mean of the effective Coriolis forcing corresponds to the divergence of stationary wave activity flux. Thus, the zonal mean of derived 3D quasi-residual mean flow is exactly equal to the traditional residual mean flow. To demonstrate the usefulness of this quasi-residual mean flow, we analyze material transport of atmospheric sulfur hexafluoride (SF6) by using an atmospheric chemistry transport model. Comparison between the derived 3D quasi-residual mean flow and traditional residual mean flow shows that the zonal mean of advection of SF6 associated with the 3D quasi-residual mean flow derived is almost equal to that of the traditional residual mean flow. Next, it is confirmed that the horizontal structure of advection of SF6 associated with the 3D quasi-residual mean flow is balanced with the transport because of the nonlinear, nonconservative effects of disturbances. This relation is similar to the results for traditional residual mean flow in the zonal-mean state.


Author(s):  
К.А. Диденко ◽  
Т.С. Ермакова ◽  
А.И. Погорельцев ◽  
Е.В. Ракушина

В данной работе показано, как изменялось взаимодействие между тропосферой и стратосферой в последние десятилетия. Также оценено влияние таких явлений, как квазидвухлетнее колебание (КДК) на данное взаимодействие. Для этого было проанализировано распространение планетарных волн в атмосфере с использованием трехмерных потоков волновой активности, показана временная изменчивость потоков и линейный тренд. Кроме того, была оценена реакция тропосферы над Сибирью и Восточной Азией на КДК. The study of the variability of stratosphere-troposphere coupling during the last decades is considered. The influence of such phenomena as quasi-biennial oscillation (QBO) on this interaction was also estimated. For this, the propagation of planetary waves in the atmosphere was analyzed using three-dimensional wave activity fluxes. The temporal variability of fluxes and a linear trend was shown. In addition, the response of the troposphere over Siberia and East Asia to the QBO was assessed.


2009 ◽  
Vol 627 ◽  
pp. 235-257 ◽  
Author(s):  
M. ONORATO ◽  
L. CAVALERI ◽  
S. FOUQUES ◽  
O. GRAMSTAD ◽  
P. A. E. M. JANSSEN ◽  
...  

A wave basin experiment has been performed in the MARINTEK laboratories, in one of the largest existing three-dimensional wave tanks in the world. The aim of the experiment is to investigate the effects of directional energy distribution on the statistical properties of surface gravity waves. Different degrees of directionality have been considered, starting from long-crested waves up to directional distributions with a spread of ±30° at the spectral peak. Particular attention is given to the tails of the distribution function of the surface elevation, wave heights and wave crests. Comparison with a simplified model based on second-order theory is reported. The results show that for long-crested, steep and narrow-banded waves, the second-order theory underestimates the probability of occurrence of large waves. As directional effects are included, the departure from second-order theory becomes less accentuated and the surface elevation is characterized by weak deviations from Gaussian statistics.


Sign in / Sign up

Export Citation Format

Share Document