A Formulation of Three-Dimensional Residual Mean Flow and Wave Activity Flux Applicable to Equatorial Waves

2014 ◽  
Vol 71 (9) ◽  
pp. 3427-3438 ◽  
Author(s):  
Takenari Kinoshita ◽  
Kaoru Sato

Abstract The large-scale waves that are known to be trapped around the equator are called equatorial waves. The equatorial waves cause mean zonal wind acceleration related to quasi-biennial and semiannual oscillations. The interaction between equatorial waves and the mean wind has been studied by using the transformed Eulerian mean (TEM) equations in the meridional cross section. However, to examine the three-dimensional (3D) structure of the interaction, the 3D residual mean flow and wave activity flux for the equatorial waves are needed. The 3D residual mean flow is expressed as the sum of the Eulerian mean flow and Stokes drift. The present study derives a formula that is approximately equal to the 3D Stokes drift for equatorial waves on the equatorial beta plane (EQSD). The 3D wave activity flux for equatorial waves whose divergence corresponds to the wave forcing is also derived using the EQSD. It is shown that the meridionally integrated 3D wave activity flux for equatorial waves is proportional to the group velocity of equatorial waves.

2020 ◽  
Vol 77 (3) ◽  
pp. 943-964 ◽  
Author(s):  
Noboru Nakamura ◽  
Jonathan Falk ◽  
Sandro W. Lubis

Abstract This paper examines the role of wave–mean flow interaction in the onset and suddenness of stratospheric sudden warmings (SSWs). Evidence is presented that SSWs are, on average, a threshold behavior of finite-amplitude Rossby waves arising from the competition between an increasing wave activity A and a decreasing zonal-mean zonal wind u¯. The competition puts a limit to the wave activity flux that a stationary Rossby wave can transmit upward. A rapid, spontaneous vortex breakdown occurs once the upwelling wave activity flux reaches the limit, or equivalently, once u¯ drops below a certain fraction of uREF, a wave-free, reference-state wind inverted from the zonalized quasigeostrophic potential vorticity. This fraction is 0.5 in theory and about 0.3 in reanalyses. We propose r≡u¯/uREF as a local, instantaneous measure of the proximity to vortex breakdown (i.e., preconditioning). The ratio r generally stays above the threshold during strong-vortex winters until a pronounced final warming, whereas during weak-vortex winters it approaches the threshold early in the season, culminating in a precipitous drop in midwinter as SSWs form. The essence of the threshold behavior is captured by a semiempirical 1D model of SSWs, similar to the “traffic jam” model of Nakamura and Huang for atmospheric blocking. This model predicts salient features of SSWs including rapid vortex breakdown and downward migration of the wave activity/zonal wind anomalies, with analytical expressions for the respective time scales. The model’s response to a variety of transient wave forcing and damping is discussed.


2013 ◽  
Vol 70 (6) ◽  
pp. 1603-1615 ◽  
Author(s):  
Takenari Kinoshita ◽  
Kaoru Sato

Abstract A companion paper formulates the three-dimensional wave activity flux (3D-flux-M) whose divergence corresponds to the wave forcing on the primitive equations. However, unlike the two-dimensional wave activity flux, 3D-flux-M does not accurately describe the magnitude and direction of wave propagation. In this study, the authors formulate a modification of 3D-flux-M (3D-flux-W) to describe this propagation using small-amplitude theory for a slowly varying time-mean flow. A unified dispersion relation for inertia–gravity waves and Rossby waves is also derived and used to relate 3D-flux-W to the group velocity. It is shown that 3D-flux-W and the modified wave activity density agree with those for inertia–gravity waves under the constant Coriolis parameter assumption and those for Rossby waves under the small Rossby number assumption. To compare 3D-flux-M with 3D-flux-W, an analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) data is performed focusing on wave disturbances in the storm tracks during April. While the divergence of 3D-flux-M is in good agreement with the meridional component of the 3D residual mean flow associated with disturbances, the 3D-flux-W divergence shows slight differences in the upstream and downstream regions of the storm tracks. Further, the 3D-flux-W magnitude and direction are in good agreement with those derived by R. A. Plumb, who describes Rossby wave propagation. However, 3D-flux-M is different from Plumb’s flux in the vicinity of the storm tracks. These results suggest that different fluxes (both 3D-flux-W and 3D-flux-M) are needed to describe wave propagation and wave–mean flow interaction in the 3D formulation.


2019 ◽  
Vol 76 (3) ◽  
pp. 851-863
Author(s):  
Takenari Kinoshita ◽  
Kaoru Sato ◽  
Kentaro Ishijima ◽  
Masayuki Takigawa ◽  
Yousuke Yamashita

Abstract Three-dimensional (3D) quasi-residual mean flow is derived to diagnose 3D dynamical material transport associated with stationary planetary waves. The 3D quasi-residual mean vertical flow does not include the vertical flow due to tilting of the potential temperature caused by stationary waves, which is apparent but not seen in the mass-weighted isentropic mean state. Thus, the quasi-residual mean vertical flow is balanced with the term of diabatic heating rate. The 3D quasi-residual mean horizontal flow is balanced with the sum of the forcing due to transient wave activity flux divergence and the forcing associated with fluctuation of the potential vorticity due to stationary waves (defined as the effective Coriolis forcing). The zonal mean of the effective Coriolis forcing corresponds to the divergence of stationary wave activity flux. Thus, the zonal mean of derived 3D quasi-residual mean flow is exactly equal to the traditional residual mean flow. To demonstrate the usefulness of this quasi-residual mean flow, we analyze material transport of atmospheric sulfur hexafluoride (SF6) by using an atmospheric chemistry transport model. Comparison between the derived 3D quasi-residual mean flow and traditional residual mean flow shows that the zonal mean of advection of SF6 associated with the 3D quasi-residual mean flow derived is almost equal to that of the traditional residual mean flow. Next, it is confirmed that the horizontal structure of advection of SF6 associated with the 3D quasi-residual mean flow is balanced with the transport because of the nonlinear, nonconservative effects of disturbances. This relation is similar to the results for traditional residual mean flow in the zonal-mean state.


2014 ◽  
Vol 71 (11) ◽  
pp. 4055-4071 ◽  
Author(s):  
Jeremiah P. Sjoberg ◽  
Thomas Birner

Abstract A classic result of studying stratospheric wave–mean flow interactions presented by Holton and Mass is that, for constant incoming wave forcing (at a notional tropopause), a vacillating stratospheric response may ensue. Simple models, such as the Holton–Mass model, typically prescribe the incoming wave forcing in terms of geopotential perturbation, which is not a proxy for upward wave activity flux. Here, the authors reformulate the Holton–Mass model such that incoming upward wave activity flux is prescribed. The Holton–Mass model contains a positive wave–mean flow feedback whereby wave forcing decelerates the mean flow, allowing enhanced wave propagation, which then further decelerates the mean flow, etc., until the mean flow no longer supports wave propagation. By specifying incoming wave activity flux, this feedback is constrained to the model interior. Bistability—where the zonal wind may exist at one of two distinct steady states for a given incoming wave forcing—is maintained in this reformulated model. The model is perturbed with transient pulses of upward wave activity flux to produce transitions between the two stable states. A minimum of integrated incoming wave activity flux necessary to force these sudden stratospheric warming–like transitions exists for pulses with time scales on the order of 10 days, arising from a wave time scale internal to the model at which forcing produces the strongest mean-flow response. The authors examine how the tropopause affects the internal feedback for this model setup and find that the tropopause inversion layer may potentially provide an important source of wave activity in the lower stratosphere.


2008 ◽  
Vol 38 (6) ◽  
pp. 1340-1350 ◽  
Author(s):  
Fabrice Ardhuin ◽  
Alastair D. Jenkins ◽  
Konstadinos A. Belibassakis

Abstract The lowest order sigma-transformed momentum equation given by Mellor takes into account a phase-averaged wave forcing based on Airy wave theory. This equation is shown to be generally inconsistent because of inadequate approximations of the wave motion. Indeed the evaluation of the vertical flux of momentum requires an estimation of the pressure p and coordinate transformation function s to first order in parameters that define the large-scale evolution of the wave field, such as the bottom slope. Unfortunately, there is no analytical expression for p and s at that order. A numerical correction method is thus proposed and verified. Alternative coordinate transforms that allow a separation of wave and mean flow momenta do not suffer from this inconsistency nor do they require a numerical estimation of the wave forcing. Indeed, the problematic vertical flux is part of the wave momentum flux, thus distinct from the mean flow momentum flux, and not directly relevant to the mean flow evolution.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


Author(s):  
Susanne Horn ◽  
Peter J. Schmid ◽  
Jonathan M. Aurnou

Abstract The large-scale circulation (LSC) is the most fundamental turbulent coherent flow structure in Rayleigh-B\'enard convection. Further, LSCs provide the foundation upon which superstructures, the largest observable features in convective systems, are formed. In confined cylindrical geometries with diameter-to-height aspect ratios of Γ ≅ 1, LSC dynamics are known to be governed by a quasi-two-dimensional, coupled horizontal sloshing and torsional (ST) oscillatory mode. In contrast, in Γ ≥ √2 cylinders, a three-dimensional jump rope vortex (JRV) motion dominates the LSC dynamics. Here, we use dynamic mode decomposition (DMD) on direct numerical simulation data of liquid metal to show that both types of modes co-exist in Γ = 1 and Γ = 2 cylinders but with opposite dynamical importance. Furthermore, with this analysis, we demonstrate that ST oscillations originate from a tilted elliptical mean flow superposed with a symmetric higher order mode, which is connected to the four rolls in the plane perpendicular to the LSC in Γ = 1 tanks.


2019 ◽  
Author(s):  
Yuki Matsushita ◽  
Daiki Kado ◽  
Masashi Kohma ◽  
Kaoru Sato

Abstract. Focusing on the interannual variabilities in the zonal mean fields and Rossby wave forcing in austral winter, an interhemispheric coupling in the stratosphere is examined using reanalysis data: the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). In the present study, the Eliassen-Palm (EP) flux divergence averaged over the latitude and height regions of 50°–30° S and 0.3–1 hPa, respectively, are used as a proxy of the Rossby wave forcing, where the absolute value of the EP flux divergence is maximized in the winter in the Southern Hemisphere (SH). The interannual variabilities in the zonal mean temperature and zonal wind are significantly correlated with the SH Rossby wave forcing in the stratosphere in both the SH and Northern Hemisphere (NH). The interannual variability in the strength of the poleward residual mean flow in the SH stratosphere is also correlated with the strength of the wave forcing. This correlation is significant even around the equator at an altitude of 40 km and at NH low latitudes of 20–40 km. The temperature anomaly is consistent with this residual mean flow anomaly. The relationship between the cross-equatorial flow and the zonal mean absolute angular momentum gradient (My) is examined in the meridional cross section. The My around the equator at the altitude of 40 km is small when the wave forcing is strong, which provides a pathway for the cross-equatorial residual mean flow. These results indicate that an interhemispheric coupling is present in the stratosphere through the meridional circulation modulated by the Rossby wave forcing.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 813 ◽  
Author(s):  
Keyi Nan ◽  
Zhongyan Hu ◽  
Wei Zhao ◽  
Kaige Wang ◽  
Jintao Bai ◽  
...  

In the present work, we studied the three-dimensional (3D) mean flow field in a micro electrokinetic (μEK) turbulence based micromixer by micro particle imaging velocimetry (μPIV) with stereoscopic method. A large-scale solenoid-type 3D mean flow field has been observed. The extraordinarily fast mixing process of the μEK turbulent mixer can be primarily attributed to two steps. First, under the strong velocity fluctuations generated by μEK mechanism, the two fluids with different conductivity are highly mixed near the entrance, primarily at the low electric conductivity sides and bias to the bottom wall. Then, the well-mixed fluid in the local region convects to the rest regions of the micromixer by the large-scale solenoid-type 3D mean flow. The mechanism of the large-scale 3D mean flow could be attributed to the unbalanced electroosmotic flows (EOFs) due to the high and low electric conductivity on both the bottom and top surface.


2012 ◽  
Vol 699 ◽  
pp. 320-351 ◽  
Author(s):  
Johan Malm ◽  
Philipp Schlatter ◽  
Dan S. Henningson

AbstractDominant frequencies and coherent structures are investigated in a turbulent, three-dimensional and separated diffuser flow at $\mathit{Re}= 10\hspace{0.167em} 000$ (based on bulk velocity and inflow-duct height), where mean flow characteristics were first studied experimentally by Cherry, Elkins and Eaton (Intl J. Heat Fluid Flow, vol. 29, 2008, pp. 803–811) and later numerically by Ohlsson et al. (J. Fluid Mech., vol. 650, 2010, pp. 307–318). Coherent structures are educed by proper orthogonal decomposition (POD) of the flow, which together with time probes located in the flow domain are used to extract frequency information. The present study shows that the flow contains multiple phenomena, well separated in frequency space. Dominant large-scale frequencies in a narrow band $\mathit{St}\equiv fh/ {u}_{b} \in [0. 0092, 0. 014] $ (where $h$ is the inflow-duct height and ${u}_{b} $ is the bulk velocity), yielding time periods ${T}^{\ensuremath{\ast} } = T{u}_{b} / h\in [70, 110] $, are deduced from the time signal probes in the upper separated part of the diffuser. The associated structures identified by the POD are large streaks arising from a sinusoidal oscillating motion in the diffuser. Their individual contributions to the total kinetic energy, dominated by the mean flow, are, however, small. The reason for the oscillating movement in this low-frequency range is concluded to be the confinement of the flow in this particular geometric set-up in combination with the high Reynolds number and the large separated zone on the top diffuser wall. Based on this analysis, it is shown that the bulk of the streamwise root mean square (r.m.s.) value arises due to large-scale motion, which in turn can explain the appearance of two or more peaks in the streamwise r.m.s. value. The weak secondary flow present in the inflow duct is shown to survive into the diffuser, where it experiences an imbalance with respect to the upper expanding corners, thereby giving rise to the asymmetry of the mean separated region in the diffuser.


Sign in / Sign up

Export Citation Format

Share Document