scholarly journals Implementation and Reconfiguration of Robot Operating System on Human Follower Transporter Robot

Author(s):  
Addythia Saphala ◽  
Prianggada Indra Tanaya

Robotic Operation System (ROS) is an im- portant platform to develop robot applications. One area of applications is for development of a Human Follower Transporter Robot (HFTR), which  can  be  considered  as a custom mobile robot utilizing differential driver steering method and equipped with Kinect sensor. This study discusses the development of the robot navigation system by implementing Simultaneous Localization and Mapping (SLAM).

Author(s):  
Bruno M. F. da Silva ◽  
Rodrigo S. Xavier ◽  
Luiz M. G. Gonçalves

Since it was proposed, the Robot Operating System (ROS) has fostered solutions for various problems in robotics in the form of ROS packages. One of these problems is Simultaneous Localization and Mapping (SLAM), a problem solved by computing the robot pose and a map of its environment of operation at the same time. The increasingly availability of robot kits ready to be programmed and also of RGB-D sensors often pose the question of which SLAM package should be used given the application requirements. When the SLAM subsystem must deliver estimates for robot navigation, as is the case of applications involving autonomous navigation, this question is even more relevant. This work introduces an experimental analysis of GMapping and RTAB-Map, two ROS compatible SLAM packages, regarding their SLAM accuracy, quality of produced maps and use of produced maps in navigation tasks. Our analysis aims ground robots equipped with RGB-D sensors for indoor environments and is supported by experiments conducted on datasets from simulation, benchmarks and from our own robot.


2018 ◽  
Vol 7 (3.33) ◽  
pp. 28
Author(s):  
Asilbek Ganiev ◽  
Kang Hee Lee

In this paper, we used a robot operating system (ROS) that is designed to work with mobile robots. ROS provides us with simultaneous localization and mapping of the environment, and here it is used to autonomously navigate a mobile robot simulator between specified points. Also, when the mobile robot automatically navigates between the starting point and the target point, it bypasses obstacles; and if necessary, sets a new path of the route to reach the goal point.  


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5570
Author(s):  
Yiming Ding ◽  
Zhi Xiong ◽  
Wanling Li ◽  
Zhiguo Cao ◽  
Zhengchun Wang

The combination of biomechanics and inertial pedestrian navigation research provides a very promising approach for pedestrian positioning in environments where Global Positioning System (GPS) signal is unavailable. However, in practical applications such as fire rescue and indoor security, the inertial sensor-based pedestrian navigation system is facing various challenges, especially the step length estimation errors and heading drift in running and sprint. In this paper, a trinal-node, including two thigh-worn inertial measurement units (IMU) and one waist-worn IMU, based simultaneous localization and occupation grid mapping method is proposed. Specifically, the gait detection and segmentation are realized by the zero-crossing detection of the difference of thighs pitch angle. A piecewise function between the step length and the probability distribution of waist horizontal acceleration is established to achieve accurate step length estimation both in regular walking and drastic motions. In addition, the simultaneous localization and mapping method based on occupancy grids, which involves the historic trajectory to improve the pedestrian’s pose estimation is introduced. The experiments show that the proposed trinal-node pedestrian inertial odometer can identify and segment each gait cycle in the walking, running, and sprint. The average step length estimation error is no more than 3.58% of the total travel distance in the motion speed from 1.23 m/s to 3.92 m/s. In combination with the proposed simultaneous localization and mapping method based on the occupancy grid, the localization error is less than 5 m in a single-story building of 2643.2 m2.


Sign in / Sign up

Export Citation Format

Share Document