scholarly journals Studi Aplikasi Vacuum Preloading Sebagai Metode Alternatif Percepatan Proses Konsolidasi pada Tanah Lempung Lunak Jenuh Air: Trial GVS pada Perumahan Pantai Indah Kapuk, Jakarta

Author(s):  
Andryan Suhendra ◽  
Masyhur Irsyam

Vacuum preloading is an alternative method to improve water-saturated soft clay by accelerating the consolidation process. A trial using GVS system was done at Pantai Indah Kapuk residence, Jakarta to investigate the system reliability. Monitoring equipments used include settlement plate to measure the consolidation decrease, piezometer to measure pore water tension, inklinometer to identify the soil direction and lateral movement during the vacuum preloading process, and manometer to measure the vacuum pump pressure. Analytical calculations to estimate the consolidation decrease is done using one-dimensional consolidation theory of Terzaghi. Besides, a numerical analysis is performed by element method up to Plaxis software application. Meanwhile, the monitoring results are achieved using Asaoka theory that estimates the achieved degree of reduction and consolidation. The monitoring results and theoretical analysis indicate that the GVS system included in the vacuum preloading method is quite reliable as an alternative method of consolidation acceleration of water-saturated soft clay. 

Author(s):  
Honglei Sun ◽  
Zili He ◽  
Xueyu Geng ◽  
Mengfen Shen ◽  
Yuanqiang Cai ◽  
...  

Vacuum preloading combined with prefabricated vertical drains (PVDs) system has been widely used to improve the soft clay with high water content. Clogging is usually formed around the PVDs during the vacuum preloading, impeding the propagation of the vacuum pressure and slowing down the consolidation process. In order to understand the forming mechanism of the clogging, particle image velocimetry (PIV) technique and particle tracking velocimetry (PTV) technique were adopted in the model test of vacuum preloading test. Through this study, three stages can be identified from the results of water volume discharge rate and maximum displacements versus time. In the first stage, the soil around the PVD is horizontal consolidated, which leads to the rapid formation of clogging. In the second stage, the formation of clogging slows down due to the loss of vacuum pressure, which further reduces the drainage. In the third stage, the clogging tends to be stable, and the drainage consolidation rate is significantly reduced. PTV results show that there is difference in the displacement of large and small particles during improvement. Two methods were proposed to estimate the thickness of clogging zone, reflecting a growing layer of clogging zone compressed around the PVD. This study provides new insights to investigate the formation mechanism of clogging during vacuum preloading test.


2020 ◽  
Vol 3 (4) ◽  
pp. 1137
Author(s):  
Christian Eka Putra ◽  
Chaidir Anwar Makarim

The existence of soft soil is one of the problems in the field of construction. Soft soil is soil that has high water content and low carrying capacity. In the case of this toll road, soil investigation at the site shows that the subgrade in the toll road planning is soft clay soil to a depth of 32 meters so that soil improvement is needed. High landfill built on soft subgrade without reinforcement will experience landslides. So it is necessary to strengthen the landfill and repair the subgrade to prevent road slides. The soil improvement methods in use are vacuum preloading and Prefabricated Vertical Drain with the vacuum functioning as an additional load. In addition to accelerating the consolidation process, the vacuum can also reduce the height of the embankment needed to achieve the desired planned road elevation. Strengthening with geotextile is also carried out on the landfill with a height of 5.94 meters so that there is no landslide on the fill. Using soil improvement methods such as vacuum preloading and prefabricated vertical drain will increase the bearing capacity of the soil so that differences in bearing capacity occur before and after repair. AbstrakKeberadaan tanah lunak menjadi salah satu masalah dalam bidang konstruksi. Tanah lunak adalah tanah yang memiliki kadar air yang tinggi dan daya dukung yang rendah. Pada kasus jalan tol ini, penyelidikan tanah di lokasi menunjukan bahwa tanah dasar pada perencanaan jalan tol merupakan tanah lempung lunak hingga kedalaman 32 meter sehingga dibutuhkan perbaikan tanah dasar. Timbunan tinggi yang dibangun di atas tanah dasar lunak tanpa perkuatan akan mengalami kelongsoran. Sehingga diperlukan perkuatan timbunan dan perbaikan tanah dasar untuk mencegah kelongsoran jalan. Metode perbaikan tanah yang digunakan adalah vacuum preloading dan Prefabricated Vertical Drain dengan vacuum berfungsi sebagai beban tambahan. Selain mempercepat proses penurunan, vacuum juga dapat mengurangi tinggi timbunan yang dibutuhkan untuk mencapai elevasi jalan rencana yang diinginkan. Perkuatan dengan geotextile juga dilakukan pada timbunan dengan tinggi yang mencapai 5.94 meter supaya tidak terjadi kelongsoran pada timbunan tersebut. Dengan menggunakan metode perbaikan tanah berupa vacuum preloading dan prefabricated vertical drain akan meningkatkan daya dukung tanah sehingga akan diketahui perbedaan daya dukung yang terjadi sebelum dan sesudah diperbaiki.


2022 ◽  
Vol 07 (01) ◽  
Author(s):  
Serpil Erden ◽  

In this study, the performances of the sand piles in Istanbul's Bağcılar and Zeytinburnu districts has been analyzed using Finite Element Method (FEM). Single and group (triple) piles with various length/diameter ratios (L/D) were placed in the water-saturated soft clay soil. Sand piles were modeled in various L/D ratios (10, 5.71, and 8.57). The distance between the piles was chosen as 2 meters and the group effect was also investigated. A uniformly distributed load of 162 kN/m2 is placed on the ground. In addition, the soil was modeled with the Soft-Soil soil model, the hardening soil model for the infill part, and the sand piles with the Mohr-Coulomb soil model. According to the results , the settlement of the soil decreases by 52.8% for a single pile with an L/D ratio of 8.57. However, the best L/D ratio for triple piles was found to be 5.71. In this case, the settlement decreases by 52.8% compared to the pileless situation. Finally it was concluded that the model with the L/D ratio of 8.57 reduced settlement in the best and the most efficient way.


2013 ◽  
Vol 438-439 ◽  
pp. 1171-1175
Author(s):  
Zhi Li Sui ◽  
Zhao Guang Li ◽  
Xu Peng Wang ◽  
Wen Li Li ◽  
Tie Jun Xu

Dynamic consolidation method has been widely used in improving soft land, but always inefficient to saturated soft clay land, which is hard to improve, and even leads to rubber soil. Dynamic and drain consolidation method will deal with it well, with drainage system, pore-water can be expelled instantly from saturated soft clay as impacting. The pore-water pressure and earth pressure test in construction, the standard penetration test, plate loading test, geotechnical test after construction, which are all effective methods for effect testing. There is a comprehensive detection through different depth of soil layer with different detecting means on construction site. The results show that improving saturated soft clay land with dynamic and drain consolidation method has obtained good effect, and the fruit can be guidance for such construction in the future.


2014 ◽  
Vol 513-517 ◽  
pp. 269-272
Author(s):  
Yeong Mog Park ◽  
Ik Joo Um ◽  
Norihiko Miura ◽  
Seung Cheol Baek

The purpose of this study is to investigate the undrain shear strength increment during consolidation process of soft clayey soils. Thirty kinds of laboratory triaxial tests have been performed using undisturbed and remolded Ariake clay samples with different degree of consolidation and 5 kinds of confining pressure. Test results show that well known linear equation proposed by Yamanouchi et al.(1982) is overestimated the strength of undisturbed soft clay ground in the process of consolidation. A new simple and reasonable exponential equation proposed in this paper.


2021 ◽  
Vol 11 (20) ◽  
pp. 9715
Author(s):  
Jiahao Wang ◽  
Zunan Fu ◽  
Yanming Yu ◽  
Guoshuai Wang ◽  
Li Shi ◽  
...  

The vacuum preloading method is commonly adopted for improving the soft ground that the embankment of the railway line is laid on. The PIV (Particle Image Velocimetry) technique is a powerful tool in observing the formation of the soil column, a phenomenon that is unique to the dredged slurry when treated by vacuum preloading. However, it is not clear to what extent the motions of the slurry particles can be represented by the PIV tracers. In this paper, a mesoscopic model has been established by using the CFD-DEM method to reproduce the vacuum consolidation process of the slurry, in which the PVD (Prefabricated Vertical Drain) membrane, the slurry particles, and the tracers are described by the DEM, and the pore water is governed by the CFD method. Eight computational cases that can cover a broad range of material parameters governing the PIV model tests on the dredged slurry have been designed and studied by the established model. The representativeness of the PIV tracer is evaluated by comparing the statistic displacement of the tracer to that of the slurry particles. It is found that for the commonly used tracer, the carbon powder, can reliably represent the particle motions of the slurry since the difference in displacements of the tracer and the slurry particles is smaller than 6.5% if the diameter ratio between the tracer and the slurry particle is within 1.8.


Sign in / Sign up

Export Citation Format

Share Document