Use of Convolutional Neural Networks in the Diagnosis of Corn Diseases

2021 ◽  
Author(s):  
Paulo Victor Cunha Lima ◽  
Edson Magalhães Costa ◽  
Maria Eliana da Silva Holanda ◽  
Dhian Kelson Leite Oliveira ◽  
Esley Teixeira Espírito Santo ◽  
...  

The detection of corn (maize) crop diseases is traditionally carried out by farmers, based on their experience accumulated over a period of field practice. However, the visual observation may represent a risk of error due to subjective perception. This article presents an approach based on Deep Learning to identify diseases that affect corn crops. A public database with 3,852 images of maize plant leaves was used, dividedinto four classes: healthy corn, exserohilun leaf spot (northern leaf blight), common corn rust (common rust) and cercosporiosis (cercospora leaf/gray leaf). The proposed model used Convolutional Neural Networks (CNN) techniques for image classification. The four experiments indicated results with an average accuracy above 94.5%. These results in the identification and diagnosis of plant diseases can contribute significantly as atool to the improvement of the production chain that affect corn crops. All data are available at https://github.com/npcaufra/classificacao-doencas-milho .

Author(s):  
Sachin B. Jadhav

<span lang="EN-US">Plant pathologists desire soft computing technology for accurate and reliable diagnosis of plant diseases. In this study, we propose an efficient soybean disease identification method based on a transfer learning approach by using a pre-trained convolutional neural network (CNN’s) such as AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201. The proposed convolutional neural networks were trained using 1200 plant village image dataset of diseased and healthy soybean leaves, to identify three soybean diseases out of healthy leaves. Pre-trained CNN used to enable a fast and easy system implementation in practice. We used the five-fold cross-validation strategy to analyze the performance of networks. In this study, we used a pre-trained convolutional neural network as feature extractors and classifiers. The experimental results based on the proposed approach using pre-trained AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201 networks achieve an accuracy of 95%, 96.4 %, 96.4 %, 92.1%, 93.6% respectively. The experimental results for the identification of soybean diseases indicated that the proposed networks model achieves the highest accuracy</span>


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2388
Author(s):  
Sk Mahmudul Hassan ◽  
Michal Jasinski ◽  
Zbigniew Leonowicz ◽  
Elzbieta Jasinska ◽  
Arnab Kumar Maji

Various plant diseases are major threats to agriculture. For timely control of different plant diseases in effective manner, automated identification of diseases are highly beneficial. So far, different techniques have been used to identify the diseases in plants. Deep learning is among the most widely used techniques in recent times due to its impressive results. In this work, we have proposed two methods namely shallow VGG with RF and shallow VGG with Xgboost to identify the diseases. The proposed model is compared with other hand-crafted and deep learning-based approaches. The experiments are carried on three different plants namely corn, potato, and tomato. The considered diseases in corns are Blight, Common rust, and Gray leaf spot, diseases in potatoes are early blight and late blight, and tomato diseases are bacterial spot, early blight, and late blight. The result shows that our implemented shallow VGG with Xgboost model outperforms different deep learning models in terms of accuracy, precision, recall, f1-score, and specificity. Shallow Visual Geometric Group (VGG) with Xgboost gives the highest accuracy rate of 94.47% in corn, 98.74% in potato, and 93.91% in the tomato dataset. The models are also tested with field images of potato, corn, and tomato. Even in field image the average accuracy obtained using shallow VGG with Xgboost are 94.22%, 97.36%, and 93.14%, respectively.


2020 ◽  
Vol 3 (1) ◽  
pp. 445-454
Author(s):  
Celal Buğra Kaya ◽  
Alperen Yılmaz ◽  
Gizem Nur Uzun ◽  
Zeynep Hilal Kilimci

Pattern classification is related with the automatic finding of regularities in dataset through the utilization of various learning techniques. Thus, the classification of the objects into a set of categories or classes is provided. This study is undertaken to evaluate deep learning methodologies to the classification of stock patterns. In order to classify patterns that are obtained from stock charts, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long-short term memory networks (LSTMs) are employed. To demonstrate the efficiency of proposed model in categorizing patterns, hand-crafted image dataset is constructed from stock charts in Istanbul Stock Exchange and NASDAQ Stock Exchange. Experimental results show that the usage of convolutional neural networks exhibits superior classification success in recognizing patterns compared to the other deep learning methodologies.


2019 ◽  
Vol 11 (12) ◽  
pp. 1461 ◽  
Author(s):  
Husam A. H. Al-Najjar ◽  
Bahareh Kalantar ◽  
Biswajeet Pradhan ◽  
Vahideh Saeidi ◽  
Alfian Abdul Halin ◽  
...  

In recent years, remote sensing researchers have investigated the use of different modalities (or combinations of modalities) for classification tasks. Such modalities can be extracted via a diverse range of sensors and images. Currently, there are no (or only a few) studies that have been done to increase the land cover classification accuracy via unmanned aerial vehicle (UAV)–digital surface model (DSM) fused datasets. Therefore, this study looks at improving the accuracy of these datasets by exploiting convolutional neural networks (CNNs). In this work, we focus on the fusion of DSM and UAV images for land use/land cover mapping via classification into seven classes: bare land, buildings, dense vegetation/trees, grassland, paved roads, shadows, and water bodies. Specifically, we investigated the effectiveness of the two datasets with the aim of inspecting whether the fused DSM yields remarkable outcomes for land cover classification. The datasets were: (i) only orthomosaic image data (Red, Green and Blue channel data), and (ii) a fusion of the orthomosaic image and DSM data, where the final classification was performed using a CNN. CNN, as a classification method, is promising due to hierarchical learning structure, regulating and weight sharing with respect to training data, generalization, optimization and parameters reduction, automatic feature extraction and robust discrimination ability with high performance. The experimental results show that a CNN trained on the fused dataset obtains better results with Kappa index of ~0.98, an average accuracy of 0.97 and final overall accuracy of 0.98. Comparing accuracies between the CNN with DSM result and the CNN without DSM result for the overall accuracy, average accuracy and Kappa index revealed an improvement of 1.2%, 1.8% and 1.5%, respectively. Accordingly, adding the heights of features such as buildings and trees improved the differentiation between vegetation specifically where plants were dense.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 990 ◽  
Author(s):  
Sheng Shen ◽  
Honghui Yang ◽  
Junhao Li ◽  
Guanghui Xu ◽  
Meiping Sheng

Detecting and classifying ships based on radiated noise provide practical guidelines for the reduction of underwater noise footprint of shipping. In this paper, the detection and classification are implemented by auditory inspired convolutional neural networks trained from raw underwater acoustic signal. The proposed model includes three parts. The first part is performed by a multi-scale 1D time convolutional layer initialized by auditory filter banks. Signals are decomposed into frequency components by convolution operation. In the second part, the decomposed signals are converted into frequency domain by permute layer and energy pooling layer to form frequency distribution in auditory cortex. Then, 2D frequency convolutional layers are applied to discover spectro-temporal patterns, as well as preserve locality and reduce spectral variations in ship noise. In the third part, the whole model is optimized with an objective function of classification to obtain appropriate auditory filters and feature representations that are correlative with ship categories. The optimization reflects the plasticity of auditory system. Experiments on five ship types and background noise show that the proposed approach achieved an overall classification accuracy of 79.2%, which improved by 6% compared to conventional approaches. Auditory filter banks were adaptive in shape to improve accuracy of classification.


2017 ◽  
Vol 10 (27) ◽  
pp. 1329-1342 ◽  
Author(s):  
Javier O. Pinzon Arenas ◽  
Robinson Jimenez Moreno ◽  
Paula C. Useche Murillo

This paper presents the implementation of a Region-based Convolutional Neural Network focused on the recognition and localization of hand gestures, in this case 2 types of gestures: open and closed hand, in order to achieve the recognition of such gestures in dynamic backgrounds. The neural network is trained and validated, achieving a 99.4% validation accuracy in gesture recognition and a 25% average accuracy in RoI localization, which is then tested in real time, where its operation is verified through times taken for recognition, execution behavior through trained and untrained gestures, and complex backgrounds.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Zhuofu Deng ◽  
Binbin Wang ◽  
Zhiliang Zhu

Maxillary sinus segmentation plays an important role in the choice of therapeutic strategies for nasal disease and treatment monitoring. Difficulties in traditional approaches deal with extremely heterogeneous intensity caused by lesions, abnormal anatomy structures, and blurring boundaries of cavity. 2D and 3D deep convolutional neural networks have grown popular in medical image segmentation due to utilization of large labeled datasets to learn discriminative features. However, for 3D segmentation in medical images, 2D networks are not competent in extracting more significant spacial features, and 3D ones suffer from unbearable burden of computation, which results in great challenges to maxillary sinus segmentation. In this paper, we propose a deep neural network with an end-to-end manner to generalize a fully automatic 3D segmentation. At first, our proposed model serves a symmetrical encoder-decoder architecture for multitask of bounding box estimation and in-region 3D segmentation, which cannot reduce excessive computation requirements but eliminate false positives remarkably, promoting 3D segmentation applied in 3D convolutional neural networks. In addition, an overestimation strategy is presented to avoid overfitting phenomena in conventional multitask networks. Meanwhile, we introduce residual dense blocks to increase the depth of the proposed network and attention excitation mechanism to improve the performance of bounding box estimation, both of which bring little influence to computation cost. Especially, the structure of multilevel feature fusion in the pyramid network strengthens the ability of identification to global and local discriminative features in foreground and background achieving more advanced segmentation results. At last, to address problems of blurring boundary and class imbalance in medical images, a hybrid loss function is designed for multiple tasks. To illustrate the strength of our proposed model, we evaluated it against the state-of-the-art methods. Our model performed better significantly with an average Dice 0.947±0.031, VOE 10.23±5.29, and ASD 2.86±2.11, respectively, which denotes a promising technique with strong robust in practice.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3556 ◽  
Author(s):  
Husein Perez ◽  
Joseph H. M. Tah ◽  
Amir Mosavi

Clients are increasingly looking for fast and effective means to quickly and frequently survey and communicate the condition of their buildings so that essential repairs and maintenance work can be done in a proactive and timely manner before it becomes too dangerous and expensive. Traditional methods for this type of work commonly comprise of engaging building surveyors to undertake a condition assessment which involves a lengthy site inspection to produce a systematic recording of the physical condition of the building elements, including cost estimates of immediate and projected long-term costs of renewal, repair and maintenance of the building. Current asset condition assessment procedures are extensively time consuming, laborious, and expensive and pose health and safety threats to surveyors, particularly at height and roof levels which are difficult to access. This paper aims at evaluating the application of convolutional neural networks (CNN) towards an automated detection and localisation of key building defects, e.g., mould, deterioration, and stain, from images. The proposed model is based on pre-trained CNN classifier of VGG-16 (later compaired with ResNet-50, and Inception models), with class activation mapping (CAM) for object localisation. The challenges and limitations of the model in real-life applications have been identified. The proposed model has proven to be robust and able to accurately detect and localise building defects. The approach is being developed with the potential to scale-up and further advance to support automated detection of defects and deterioration of buildings in real-time using mobile devices and drones.


Sign in / Sign up

Export Citation Format

Share Document